Skip to main content
Log in

Fourier Transform Infrared Emission Spectroscopy in the Study of Biological Molecules

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Infrared spectroscopy is a powerful analytical method that is not completely developed in relation to biological systems as yet. Previously, this method has been successfully used to analyze secondary structures. This mini-review shows the latest advances in the study of proteins using the Fourier transform infrared technique. The application of Fourier transform infrared emission spectroscopy to the study of photophysical and photochemical reactions in photoreceptor proteins is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach (Wiley, Chichester, 2005).

    Google Scholar 

  2. S. Krimm and J. Bandekar, Adv. Protein Chem. 38, 181 (1986).

    Article  Google Scholar 

  3. E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (Dover Publ., New York, 1980).

    Google Scholar 

  4. H. Callender and B. Honig, Annu. Rev. Biophys. Bioeng. 6, 33 (1977).

    Article  Google Scholar 

  5. L. J. Bellamy, The Infra-Red Spectra of Complex Molecules, 3rd ed. (Halsted Press, New York, 1975).

    Book  Google Scholar 

  6. R. Zbinden, Infrared Spectroscopy of High Polymers (Academic, New York, 1964; Mir, Moscow, 1966).

  7. A. Elliott and E. J. Ambrose, Nature 165, 921 (1950).

    Article  ADS  Google Scholar 

  8. T. Miyazawa, J. Am. Chem. Soc. 83, 712 (1961).

    Article  Google Scholar 

  9. A. Barth, Biochim Biophys. Acta 1767 (9), 1073 (2007).

    Article  Google Scholar 

  10. W. Mäntele, Spectrochim. Acta. Part A: Mol. Biomol. Spectrosc. 138, 964 (2015).

    Article  ADS  Google Scholar 

  11. J. K. Koenig and Sh. Yu, Acta Biochim. Biophys. Sinica 39 (8), 549 (2007).

    Article  Google Scholar 

  12. A Elliott, Infra-red Spectra and Structure of Organic Long-chain Polymers (Edward Arnold, London, 1969; Mir, Moscow, 1972).

  13. A. Barth and C. Zscherp, Q. Rev. Biophys. 35 (4), 369 (2002).

    Article  Google Scholar 

  14. S. Krimm and J. Bandekar, Biopolymers 19, 1 (1980).

    Article  Google Scholar 

  15. M. C. Manning, Expert Rev. Proteomics 2 (5), 731 (2005).

    Article  Google Scholar 

  16. Yu. N. Chirgadze, Structure and Stability of Biological Macromolecules (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  17. T. Miyazawa, J. Am. Chem. Soc. 83, 712 (1961).

    Article  Google Scholar 

  18. W. K. Surewicz and H. H. Mantsch, Biochim. Biophys. Acta 952, 115 (1988).

    Article  Google Scholar 

  19. R. Gilmanshin, S. Williams, R. H. Callender, et al., Proc. Natl. Acad. Sci. U. S. A. 94, 3709 (1997).

    Article  ADS  Google Scholar 

  20. E. L. Karjalainen and A. Barth, J. Phys. Chem. B 116, 4448 (2012).

    Article  Google Scholar 

  21. H. Susi and D. M. Byler, Biochem. Biophys. Res. Commun. 115 (1), 391 (1983).

    Article  Google Scholar 

  22. D. M. Byler and H. Susi, Biopolymers 25, 469 (1986).

    Article  Google Scholar 

  23. W. K. Surewicz and H. H. Mantsch, Biochim. Biophys. Acta 952, 115 (1988).

    Article  Google Scholar 

  24. A. Barth, Prog. Biophys. Mol. Biol. 74, 141 (2000).

    Article  Google Scholar 

  25. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectroscopy (Wiley, New York, 1986).

    Google Scholar 

  26. P. I. Haris and D. Chapman, Biochim. Biophys. Acta 943 (2), 375 (1988).

    Article  Google Scholar 

  27. M. C. Manning, Expert Rev. Proteomics 2 (5), 731 (2005).

    Article  Google Scholar 

  28. S. Y. Venyaminov and N. N. Kalnin, Biopolymers 30, 1243 (1990).

    Article  Google Scholar 

  29. S. Y. Venyaminov and N. N. Kalnin, Biopolymers 30, 1259 (1990).

    Article  Google Scholar 

  30. N. N. Kalnin, I. A. Baikalov, and S. Y. Venyaminov, Biopolymers 30, 1273 (1990).

    Article  Google Scholar 

  31. Y. N. Chirgadze, O. V. Fedorov, and N. P. Trushina, Biopolymers 14, 679 (1975).

    Article  Google Scholar 

  32. A. Dong, P. Huang, and W. S. Caughey, Biochemistry 29, 3303(1990).

    Article  Google Scholar 

  33. B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, Boca Raton, 1996).

    Google Scholar 

  34. J. K. Kauppinen, D. J. Moffatt, H. H. Mantsch, et al., Appl. Spectrosc. 35, 271 (1986).

    Article  ADS  Google Scholar 

  35. D. C. Lee, P. I. Haris, D. Chapman, et al., Biochemistry 29, 9185 (1990).

    Article  Google Scholar 

  36. R. W. Sarver and W. C. Krueger, Anal. Biochem. 194, 89 (1991).

    Article  Google Scholar 

  37. A. Barth and C. Zscherp, FEBS Lett. 477, 151 (2000).

    Article  Google Scholar 

  38. M. van de Weert, P. I. Haris, W. E. Hennink, et al., Anal. Biochem. 297 (2), 160 (2001).

    Article  Google Scholar 

  39. R. Chehin, I. Iloro, M. J. Marcos, et al., Biochemistry 38, 1525 (1999).

    Article  Google Scholar 

  40. P. Herman, M. Staiano, A. Marabotti, et al., Proteins Struct. Funct. Bioinform. 63, 754 (2006).

    Article  Google Scholar 

  41. K. J. Rothschild, M. Zagaeski, and A. Cantore, Biochem. Biophys. Res. Commun. 103 (2), 483 (1981).

    Article  Google Scholar 

  42. K. J. Rothschild, H. Marrero, M. Braiman, et al., Photochem. Photobiol. 40, 675 (1984).

    Article  Google Scholar 

  43. K. J. Rothshild, J. Bioenerg. Biomembr. 24, 147 (1992).

    Article  Google Scholar 

  44. K. J. Rothschild, Biomed. Spectrosc. Imaging 5 (3), 231 (2016).

    Article  Google Scholar 

  45. W. Mantele, Trends Biosci. J. 18, 197 (1993).

    Google Scholar 

  46. F. Siebert, W. Mantele, and W. Kreutz, FEBS Lett. 141, 82 (1982).

    Article  Google Scholar 

  47. F. Siebert and W. Mantele, Eur. J. Biochem. 130 (3), 565 (1983).

    Article  Google Scholar 

  48. F. Siebert, Methods Enzymol. 246, 501 (1995).

    Article  Google Scholar 

  49. R. A. Mathies, C. H. Cruz Brito, W. T. Pollard, et al., Science 240 (4853), 777 (1988).

    Article  ADS  Google Scholar 

  50. R. A. Mathies, S. W. Lin, J. B. Ames, et al., Annu. Rev. Biophys. Biophys. Chem. 20, 491 (1991).

    Article  Google Scholar 

  51. 51. H. G. Khorana, G. E. Gerber, W. C. Herlihy, et al., Proc. Natl. Acad. Sci. U. S. A. 76 (10), 5046 (1979).

    Article  ADS  Google Scholar 

  52. A. Maeda, Israel J. Chem. 35, 387 (1995).

    Article  Google Scholar 

  53. A. Maeda, J. E. Morgan, R. B. Gennis, et al., Photochem. Photobiol. 82 (6), 1398 (2006).

    Google Scholar 

  54. A. Maeda, R. B. Gennis, S. P. Balashov, et al., Biochemistry 44 (16), 5960 (2005).

    Article  Google Scholar 

  55. M. S. Braiman, T. Mogi, T. Marti, et al., Biochemistry 27, 8516 (1988).

    Article  Google Scholar 

  56. M. S. Braiman, T. Mogi, L. J. Stern, et al., Proteins: Struct. Funct. Bioinf. 3 (4), 219 (1988).

    Article  Google Scholar 

  57. K. Gerwert and F. Siebert, EMBO J. 5 (4), 805 (1986).

    Article  Google Scholar 

  58. K.Gerwert, B. Hess, and M. Engelhard, FEBS Lett. 261, 449 (1990).

    Article  Google Scholar 

  59. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967; Mir, Moscow, 1970).

  60. J. M. Chalmers and M. W. Mackenzie, in Advances in Applied Fourier Transform Infrared Spectroscopy, Ed. by M. W. Mackenzie (Wiley, Chichester, 1988), pp. 170–188.

    Google Scholar 

  61. P. R. Griffiths, Appl. Spectrosc. 26, 73 (1972).

    Article  ADS  Google Scholar 

  62. F. J. De Blase and S. Compton, Appl. Spectrosc. 45 (4), 611 (1991).

    Article  ADS  Google Scholar 

  63. J. Mink and G. Keresztury, Appl. Spectrosc. 47 (9), 1446 (1993).

    Article  ADS  Google Scholar 

  64. E. L. Terpugov, O. V. Degtyareva, and V. V. Savransky, J. Russ. Laser Res. 37 (5), 401 (2016).

    Article  Google Scholar 

  65. J. Breton, E. Nabedryk, and A. Clerici, Vib. Spectrosc. 19, 71(1999).

    Article  Google Scholar 

  66. F. Garczarek, J. Wang, M. A. El-Sayed, et al., Biophys. J. 87 (4), 2676 (2004).

    Article  ADS  Google Scholar 

  67. J. Wang and M. A. El-Sayed, Biophys. J. 90, 961 (2001).

    Article  Google Scholar 

  68. E. L. Terpugov and O. V. Degtyareva, Biochemistry (Moscow) 66, 1315 (2001).

    Article  Google Scholar 

  69. E. L. Terpugov and O. V. Degtyareva, J. Mol. Struct. 565–566, 287 (2001).

  70. A. G. Gagarinov, O. V. Degtyareva, A. A. Khodonov, et al., Vib. Spectrosc. 42, 231 (2006).

    Article  Google Scholar 

  71. J. Wang and M. A. El-Sayed, Biophys. J. 83 (3), 1589 (2002).

    Article  ADS  Google Scholar 

  72. G. I. Groma, J. Hebling, I. Z. Kozma, et al., Proc. Natl. Acad. Sci. U. S. A. 81 (6), 1706 (2008).

    Google Scholar 

  73. G. I. Groma, A. Colonna, J. Lambry, et al., Proc. Natl. Acad. Sci. U. S. A. 105 (19), 6888 (2004).

    Article  ADS  Google Scholar 

  74. I. G. Groma, A. Colonna, J.-L. Martin, et al., Biophys. J. 100 (6), 1578 (2011).

    Article  ADS  Google Scholar 

  75. E. L. Terpugov and O. V. Degtyareva, JETP Letters. 73 (6), 282 (2001).

    Article  ADS  Google Scholar 

  76. E. L. Terpugov, O. V. Degtyareva, A. G. Gagarinov, et al., Kratk. Soobshch. Fiz. FIAN 12, 13 (2004).

    Google Scholar 

  77. Y. R. Shen, The Principles of Nonlinear Optics (Willey, New York, 1984).

    Google Scholar 

  78. S. A. Akhmanov and R. V. Khokhlov, Problems of Nonlinear Optics (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  79. V. S. Gorelik, V. A. Zubov, M. M. Sushchinskii, et al., Pis’ma Zh. Eksp. Teor. Fiz. 4, 52 (1966).

    Google Scholar 

  80. F. De Martini, Appl. Phys. 37, 4503 (1966).

    Article  Google Scholar 

  81. D. H. McMahon and A. R. Franklin, J. Appl. Phys. 36, 2073 (1965).

    Article  ADS  Google Scholar 

  82. S. E. Terpugova, O. V. Degtyareva, V. V. Savransky, et al., Am. J. Anal. Chem. 6, 731 (2015). https://doi.org/10.4236/ajac.2015.69070

    Article  Google Scholar 

  83. A. Tsuge, Y. Uwamino, and T. Ishizuka, Appl. Spectrosc. 43 (7), 1145 (1989).

    Article  ADS  Google Scholar 

  84. M. Wolpert and P. Hellwig, Spectochim. Acta Part A 64, 987(2006).

    Article  Google Scholar 

  85. A. M. Petrosyan and V. V. Ghazaryan, J. Mol. Struct. 917, 56 (2009).

    Article  ADS  Google Scholar 

  86. Handbook of vibrational spectroscopy, Ed. by J. M. Chal-mers and P. R. Griffiths (Wiley, Chichester, 2002).

    Google Scholar 

  87. M. V. Volkenstein, M. A. Elyashevich, and B. I. Stepanov, The Oscillations of Molecules (GITTL, Moscow, 1949) [in Russian].

  88. A. N. Terenin, Photonics of Dye Moleculles (Nauka, Leningrad, 1967) [in Russian].

    Google Scholar 

  89. D. D. Dlott, Chem. Phys. 266, 149 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Terpugov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Novikova

Abbreviations: IR, infrared; ATR, attenuated total reflection; IRES, IR emission spectroscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terpugov, E.L. Fourier Transform Infrared Emission Spectroscopy in the Study of Biological Molecules. BIOPHYSICS 65, 1–11 (2020). https://doi.org/10.1134/S0006350920010212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920010212

Navigation