1932

Abstract

Although the last two decades have seen a substantial decline in malaria incidence and mortality due to the use of insecticide-treated bed nets and artemisinin combination therapy, the threat of drug resistance is a constant obstacle to sustainable malaria control. Given that patients can die quickly from this disease, public health officials and doctors need to understand whether drug resistance exists in the parasite population, as well as how prevalent it is so they can make informed decisions about treatment. As testing for drug efficacy before providing treatment to malaria patients is impractical, researchers need molecular markers of resistance that can be more readily tracked in parasite populations. To this end, much work has been done to unravel the genetic underpinnings of drug resistance in . The aim of this review is to provide a broad overview of common genomic approaches that have been used to discover the alleles that drive drug response phenotypes in the most lethal human malaria parasite.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-012220-064343
2020-09-08
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-012220-064343.html?itemId=/content/journals/10.1146/annurev-micro-012220-064343&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK et al. 2011. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar. J. 10:1144
    [Google Scholar]
  2. 2. 
    Adams T, Ennuson NAA, Quashie NB, Futagbi G, Matrevi S et al. 2018. Prevalence of Plasmodium falciparum delayed clearance associated polymorphisms in adaptor protein complex 2 mu subunit (pfap2mu) and ubiquitin specific protease 1 (pfubp1) genes in Ghanaian isolates. Parasit. Vectors 11:1175
    [Google Scholar]
  3. 3. 
    Afonso A, Hunt P, Cheesman S, Alves AC, Cunha CV et al. 2006. Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob. Agents Chemother 50:2480–89
    [Google Scholar]
  4. 4. 
    Agrawal S, Moser KA, Morton L, Cummings MP, Parihar A et al. 2017. Association of a novel mutation in the Plasmodium falciparum chloroquine resistance transporter with decreased piperaquine sensitivity. J. Infect. Dis. 216:4468–76
    [Google Scholar]
  5. 5. 
    Amambua-Ngwa A, Amenga-Etego L, Kamau E, Amato R, Ghansah A et al. 2019. Major subpopulations of Plasmodium falciparum in sub-Saharan Africa. Science 365:6455813–16
    [Google Scholar]
  6. 6. 
    Amambua-Ngwa A, Jeffries D, Amato R, Worwui A, Karim M et al. 2018. Consistent signatures of selection from genomic analysis of pairs of temporal and spatial Plasmodium falciparum populations from The Gambia. Sci. Rep. 8:9687
    [Google Scholar]
  7. 7. 
    Amato R, Lim P, Miotto O, Amaratunga C, Dek D et al. 2017. Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect. Dis. 17:2164–73
    [Google Scholar]
  8. 8. 
    Anderson TJC. 2004. Mapping drug resistance genes in Plasmodium falciparum by genomewide association. Curr. Drug Targets Infect. Disord. 4:165–78
    [Google Scholar]
  9. 9. 
    Anderson TJC, Haubold B, Williams JT, Estrada-Franco JG, Richardson L et al. 2000. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol. Biol. Evol 17:101467–82
    [Google Scholar]
  10. 10. 
    Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C et al. 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505:748150–55
    [Google Scholar]
  11. 11. 
    Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M et al. 2007. Robust expansion of human hepatocytes in Fah−/−Rag2−/−Il2rg−/− mice. Nat. Biotechnol. 25:8903–10
    [Google Scholar]
  12. 12. 
    Banyal HS, Inselburg J. 1986. Plasmodium falciparum: induction, selection, and characterization of pyrimethamine-resistant mutants. Exp. Parasitol. 62:161–70
    [Google Scholar]
  13. 13. 
    Basco LK, Ringwald P. 2001. Analysis of the key pfcrt point mutation and in vitro and in vivo response to chloroquine in Yaoundé, Cameroon. J. Infect. Dis. 183:121828–31
    [Google Scholar]
  14. 14. 
    Bélard S, Ramharter M. 2018. DSM265: a novel drug for single-dose cure of Plasmodium falciparum malaria. Lancet Infect. Dis. 18:8819–20
    [Google Scholar]
  15. 15. 
    Beshir K, Sutherland CJ, Merinopoulos I, Durrani N, Leslie T et al. 2010. Amodiaquine resistance in Plasmodium falciparum malaria in Afghanistan is associated with the pfcrt SVMNT allele at codons 72 to 76. Antimicrob. Agents Chemother. 54:93714–16
    [Google Scholar]
  16. 16. 
    Birnbaum J, Scharf S, Schmidt S, Jonscher E, Hoeijmakers WAM et al. 2020. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science 367:647351–59
    [Google Scholar]
  17. 17. 
    Blasco B, Leroy D, Fidock DA 2017. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat. Med. 23:8917–28
    [Google Scholar]
  18. 18. 
    Bopp S, Magistrado P, Wong W, Schaffner SF, Mukherjee A et al. 2018. Plasmepsin II-III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum. Nat. Commun 9:11769
    [Google Scholar]
  19. 19. 
    Borrmann S, Straimer J, Mwai L, Abdi A, Rippert A et al. 2013. Genome-wide screen identifies new candidate genes associated with artemisinin susceptibility in Plasmodium falciparum in Kenya. Sci. Rep. 3:3318
    [Google Scholar]
  20. 20. 
    Brockelman CR, Monkolkeha S, Tanariya P 1981. Decrease in susceptibility of Plasmodium falciparum to mefloquine in continuous culture. Bull. World Health Organ. 59:2249–52
    [Google Scholar]
  21. 21. 
    Cerqueira GC, Cheeseman IH, Schaffner SF, Nair S, McDew-White M et al. 2017. Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome Biol 18:178
    [Google Scholar]
  22. 22. 
    Chakrabarti R, White J, Babar PH, Kumar S, Mudeppa DG et al. 2019. Decreased in vitro artemisinin sensitivity of Plasmodium falciparum across India. Antimicrob. Agents Chemother. 63:10e00101–19
    [Google Scholar]
  23. 23. 
    Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A et al. 2012. A major genome region underlying artemisinin resistance in malaria. Science 336:607779–82
    [Google Scholar]
  24. 24. 
    Chen N, Russell B, Staley J, Kotecka B, Nasveld P, Cheng Q 2001. Sequence polymorphisms in pfcrt are strongly associated with chloroquine resistance in Plasmodium falciparum. J. Infect. Dis 183:101543–45
    [Google Scholar]
  25. 25. 
    Collins W. 1994. The owl monkey as a model for malaria. Aotus: The Owl Monkey JF Baer, RE Weller, I Kakoma 217–44 San Diego, CA: Academic
    [Google Scholar]
  26. 26. 
    Collins WE, Sullivan JS, Williams A, Nace D, Williams T et al. 2006. Aotus nancymaae as a potential model for the testing of anti-sporozoite and liver stage vaccines against Plasmodium falciparum. Am. J. Trop. Med. Hyg 74:3422–24
    [Google Scholar]
  27. 27. 
    Contacos PG, Collins WE. 1968. Falciparum malaria transmissible from monkey to man by mosquito bite. Science 161:383656
    [Google Scholar]
  28. 28. 
    Cowell A, Winzeler E. 2018. Exploration of the Plasmodium falciparum resistome and druggable genome reveals new mechanisms of drug resistance and antimalarial targets. Microbiol. Insights 11: https://doi.org/10.1177/1178636118808529
    [Crossref] [Google Scholar]
  29. 29. 
    Cowell AN, Istvan ES, Lukens AK, Gomez-Lorenzo MG, Vanaerschot M et al. 2017. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science 359:6372191–99
    [Google Scholar]
  30. 30. 
    Cowman AF, Galatis D, Thompson JK 1994. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. PNAS 91:31143–47
    [Google Scholar]
  31. 31. 
    Cui L, Wang Z, Miao J, Miao M, Chandra R et al. 2012. Mechanisms of in vitro resistance to dihydroartemisinin in Plasmodium falciparum. Mol. Microbiol 86:1111–28
    [Google Scholar]
  32. 32. 
    Damena D, Denis A, Golassa L, Chimusa ER 2019. Genome-wide association studies of severe P. falciparum malaria susceptibility: progress, pitfalls and prospects. BMC Med. Genom. 12:1120
    [Google Scholar]
  33. 33. 
    Demas AR, Sharma AI, Wong W, Early AM, Redmond S et al. 2018. Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility. PNAS 115:5012799–804
    [Google Scholar]
  34. 34. 
    Dharia NV, Sidhu ABS, Cassera MB, Westenberger SJ, Bopp SE et al. 2009. Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum. Genome Biol 10:2R21
    [Google Scholar]
  35. 35. 
    Djimdé A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S et al. 2001. A molecular marker for chloroquine-resistant falciparum malaria. N. Engl. J. Med. 344:4257–63
    [Google Scholar]
  36. 36. 
    Dondorp AM, Nosten F, Yi P, Das D, Phyo AP et al. 2009. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361:5455–67
    [Google Scholar]
  37. 37. 
    Duru V, Khim N, Leang R, Kim S, Domergue A et al. 2015. Plasmodium falciparum dihydroartemisinin-piperaquine failures in Cambodia are associated with mutant K13 parasites presenting high survival rates in novel piperaquine in vitro assays: retrospective and prospective investigations. BMC Med 13:1305
    [Google Scholar]
  38. 38. 
    Eastman RT, Dharia NV, Winzeler EA, Fidock DA 2011. Piperaquine resistance is associated with a copy number variation on chromosome 5 in drug-pressured Plasmodium falciparum parasites. Antimicrob. Agents Chemother. 55:83908–16
    [Google Scholar]
  39. 39. 
    Farooq U, Mahajan RC. 2004. Drug resistance in malaria. J. Vector Borne Dis. 41:3–445–53
    [Google Scholar]
  40. 40. 
    Ferdig MT, Cooper RA, Mu J, Deng B, Joy DA et al. 2004. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol. Microbiol. 52:4985–97
    [Google Scholar]
  41. 41. 
    Ferdig MT, Su XZ. 2000. Microsatellite markers and genetic mapping in Plasmodium falciparum.Parasitol. Today 16:7307–12
    [Google Scholar]
  42. 42. 
    Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM et al. 2000. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell 6:4861–71
    [Google Scholar]
  43. 43. 
    Figan CE, JM, Mu J, Melendez-Muniz VA, Liu CH, Wellems TE 2018. A set of microsatellite markers to differentiate Plasmodium falciparum progeny of four genetic crosses. Malar. J. 17:60 https://doi.org/10.1186/s12936-018-2210-z
    [Crossref] [Google Scholar]
  44. 44. 
    Folarin OA, Bustamante C, Gbotosho GO, Sowunmi A, Zalis MG et al. 2011. In vitro amodiaquine resistance and its association with mutations in pfcrt and pfmdr1 genes of Plasmodium falciparum isolates from Nigeria. Acta Trop 120:3224–30
    [Google Scholar]
  45. 45. 
    Gardner MJ, Hall N, Fung E, White O, Berriman M et al. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:6906498–511
    [Google Scholar]
  46. 46. 
    Gregson A, Plowe CV. 2005. Mechanisms of resistance of malaria parasites to antifolates. Pharmacol. Rev. 57:1117–45
    [Google Scholar]
  47. 47. 
    Guler JL, Freeman DL, Ahyong V, Patrapuvich R, White J et al. 2013. Asexual populations of the human malaria parasite, Plasmodium falciparum, use a two-step genomic strategy to acquire accurate, beneficial DNA amplifications. PLOS Pathog 9:5e1003375
    [Google Scholar]
  48. 48. 
    Hayton K, Dumoulin P, Henschen B, Liu A, Papakrivos J, Wellems TE 2013. Various PfRH5 polymorphisms can support Plasmodium falciparum invasion into the erythrocytes of owl monkeys and rats. Mol. Biochem. Parasitol. 187:2103.as
    [Google Scholar]
  49. 49. 
    Hayton K, Gaur D, Liu A, Takahashi J, Henschen B et al. 2008. Erythrocyte binding protein PfRH5 polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. Cell Host Microbe 4:140–51
    [Google Scholar]
  50. 50. 
    Henden L, Lee S, Mueller I, Barry A, Bahlo M 2018. Identity-by-descent analyses for measuring population dynamics and selection in recombining pathogens. PLOS Genet 14:5e1007279
    [Google Scholar]
  51. 51. 
    Henrici RC, van Schalkwyk DA, Sutherland CJ 2019. Modification of pfap2μ and pfubp1 markedly reduces ring-stage susceptibility of Plasmodium falciparum to artemisinin in vitro. Antimicrob. Agents Chemother. 64:1e01542–19
    [Google Scholar]
  52. 52. 
    Henriques G, Hallett RL, Beshir KB, Gadalla NB, Johnson RE et al. 2014. Directional selection at the pfmdr1, pfcrt, pfubp1, and pfap2mu loci of Plasmodium falciparum in Kenyan children treated with ACT. J. Infect. Dis. 210:122001–8
    [Google Scholar]
  53. 53. 
    Henriques G, Martinelli A, Rodrigues L, Modrzynska K, Fawcett R et al. 2013. Artemisinin resistance in rodent malaria—mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking. Malar. J. 12:118
    [Google Scholar]
  54. 54. 
    Henriques G, van Schalkwyk DA, Burrow R, Warhurst DC, Thompson E et al. 2015. The Mu subunit of Plasmodium falciparum clathrin-associated adaptor protein 2 modulates in vitro parasite response to artemisinin and quinine. Antimicrob. Agents Chemother. 59:52540–47
    [Google Scholar]
  55. 55. 
    Herrera S, Perlaza BL, Bonelo A, Arévalo-Herrera M 2002. Aotus monkeys: their great value for anti-malaria vaccines and drug testing. Int. J. Parasitol. 32:131625sit
    [Google Scholar]
  56. 56. 
    Holmgren G, Gil JP, Ferreira PM, Veiga MI, Obonyo CO, Björkman A 2006. Amodiaquine resistant Plasmodium falciparum malaria in vivo is associated with selection of pfcrt 76T and pfmdr1 86Y. Infect. Genet. Evol. 6:4309–14
    [Google Scholar]
  57. 57. 
    Holmgren G, Hamrin J, Svärd J, Mårtensson A, Gil JP, Björkman A 2007. Selection of pfmdr1 mutations after amodiaquine monotherapy and amodiaquine plus artemisinin combination therapy in East Africa. Infect. Genet. Evol. 7:5562–69
    [Google Scholar]
  58. 58. 
    Hudson AT. 1993. Atovaquone—a novel broad-spectrum anti-infective drug. Parasitol. Today 9:266–68
    [Google Scholar]
  59. 59. 
    Hunt P, Afonso A, Creasey A, Culleton R, Sidhu ABS et al. 2007. Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites. Mol. Microbiol. 65:127–40
    [Google Scholar]
  60. 60. 
    Hyde JE. 1990. The dihydrofolate reductase-thymidylate synthetase gene in the drug resistance of malaria parasites. Pharmacol. Ther. 48:145–59
    [Google Scholar]
  61. 61. 
    Inselburg J. 1985. Induction and isolation of artemisinine-resistant mutants of Plasmodium falciparum. Am. J. Trop. Med. Hyg 34:3417–18
    [Google Scholar]
  62. 62. 
    Inselburg J, Bzik DJ, Horii T 1987. Pyrimethamine resistant Plasmodium falciparum: overproduction of dihydrofolate reductase by a gene duplication. Mol. Biochem. Parasitol. 26:1–2121–34
    [Google Scholar]
  63. 63. 
    Isozumi R, Uemura H, Kimata I, Ichinose Y, Logedi J et al. 2015. Novel mutations in K13 propeller gene of artemisinin-resistant Plasmodium falciparum.Emerg.Infect. Dis 21:3490–92
    [Google Scholar]
  64. 64. 
    Jelinek T, Kilian AH, Kabagambe G, von Sonnenburg F 1999. Plasmodium falciparum resistance to sulfadoxine/pyrimethamine in Uganda: correlation with polymorphisms in the dihydrofolate reductase and dihydropteroate synthetase genes. Am. J. Trop. Med. Hyg 61:3463–66
    [Google Scholar]
  65. 65. 
    Jiang GF. 1992. [In vitro development of sodium artesunate resistance in Plasmodium falciparum]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 10:137–39 (In Chinese)
    [Google Scholar]
  66. 66. 
    Jiang H, Li N, Gopalan V, Zilversmit MM, Varma S et al. 2011. High recombination rates and hotspots in a Plasmodium falciparum genetic cross. Genome Biol 12:4R33
    [Google Scholar]
  67. 67. 
    Kaushansky A, Mikolajczak SA, Vignali M, Kappe SHI 2014. Of men in mice: the success and promise of humanized mouse models for human malaria parasite infections. Cell. Microbiol. 16:5602obi
    [Google Scholar]
  68. 68. 
    Kidgell C, Volkman SK, Daily J, Borevitz JO, Plouffe D et al. 2006. A systematic map of genetic variation in Plasmodium falciparum. PLOS Pathog 2:6e57
    [Google Scholar]
  69. 69. 
    Kinga Modrzynska K, Creasey A, Loewe L, Cezard T, Trindade Borges S et al. 2012. Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria. BMC Genom 13:1106
    [Google Scholar]
  70. 70. 
    Korsinczky M, Chen N, Kotecka B, Saul A, Rieckmann K, Cheng Q 2000. Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob. Agents Chemother. 44:82100–8
    [Google Scholar]
  71. 71. 
    Lambros C, Notsch JD. 1984. Plasmodium falciparum: mefloquine resistance produced in vitro. Bull. World Health Organ. 62:3433–38
    [Google Scholar]
  72. 72. 
    Li X, Kumar S, McDew-White M, Haile M, Cheeseman IH et al. 2019. Genetic mapping of fitness determinants across the malaria parasite Plasmodium falciparum life cycle. PLOS Genet 15:10e1008453
    [Google Scholar]
  73. 73. 
    Lim AS, Galatis D, Cowman AF 1996. Plasmodium falciparum: amplification and overexpression of pfmdr1 is not necessary for increased mefloquine resistance. Exp. Parasitol. 83:3295–303
    [Google Scholar]
  74. 74. 
    Llanos-Cuentas A, Casapia M, Chuquiyauri R, Hinojosa J-C, Kerr N et al. 2018. Antimalarial activity of single-dose DSM265, a novel Plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: a proof-of-concept, open-label, phase 2a study. Lancet Infect. Dis. 18:8874–83
    [Google Scholar]
  75. 75. 
    Loesbanluechai D, Kotanan N, de Cozar C, Kochakarn T, Ansbro MR et al. 2019. Overexpression of plasmepsin II and plasmepsin III does not directly cause reduction in Plasmodium falciparum sensitivity to artesunate, chloroquine and piperaquine. Int. J. Parasitol. Drugs Drug Resist. 9:16–22
    [Google Scholar]
  76. 76. 
    Looareesuwan S, Viravan C, Webster HK, Kyle DE, Hutchinson DB, Canfield CJ 1996. Clinical studies of atovaquone, alone or in combination with other antimalarial drugs, for treatment of acute uncomplicated malaria in Thailand. Am. J. Trop. Med. Hyg. 54:162–66
    [Google Scholar]
  77. 77. 
    Luth MR, Gupta P, Ottilie S, Winzeler EA 2018. Using in vitro evolution and whole genome analysis to discover next generation targets for antimalarial drug discovery. ACS Infect. Dis. 4:3301–14
    [Google Scholar]
  78. 78. 
    MalariaGEN Plasmodium falciparum Community Proj 2016. Genomic epidemiology of artemisinin resistant malaria. eLife 5:e08714
    [Google Scholar]
  79. 79. 
    Mandt REK, Lafuente-Monasterio MJ, Sakata-Kato T, Luth MR, Segura D et al. 2019. In vitro selection predicts malaria parasite resistance to dihydroorotate dehydrogenase inhibitors in a mouse infection model. Sci. Transl. Med. 11:521eaav1636
    [Google Scholar]
  80. 80. 
    Mbengue A, Bhattacharjee S, Pandharkar T, Liu H, Estiu G et al. 2015. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 520:7549683–87
    [Google Scholar]
  81. 81. 
    Mehlotra RK, Fujioka H, Roepe PD, Janneh O, Ursos LMB et al. 2001. Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with pfcrt polymorphism in Papua New Guinea and South America. PNAS 98:2212689–94
    [Google Scholar]
  82. 82. 
    Meng H, Zhang R, Yang H, Fan Q, Su X et al. 2010. In vitro sensitivity of Plasmodium falciparum clinical isolates from the China-Myanmar border area to quinine and association with polymorphism in the Na+/H+ exchanger. Antimicrob. Agents Chemother. 54:104306–13
    [Google Scholar]
  83. 83. 
    Miles A, Iqbal Z, Vauterin P, Pearson R, Campino S et al. 2016. Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum. Genome Res 26:91288–99
    [Google Scholar]
  84. 84. 
    Miotto O, Almagro-Garcia J, Manske M, Macinnis B, Campino S et al. 2013. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat. Genet. 45:6648–55
    [Google Scholar]
  85. 85. 
    Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J et al. 2015. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat. Genet 47:3226–34
    [Google Scholar]
  86. 86. 
    Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z et al. 2015. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 347:6220431–35
    [Google Scholar]
  87. 87. 
    Moukoko CEE, Huang F, Nsango SE, Foko LPK, Ebong SB et al. 2019. K-13 propeller gene polymorphisms isolated between 2014 and 2017 from Cameroonian Plasmodium falciparum malaria patients. PLOS ONE 14:9e0221895
    [Google Scholar]
  88. 88. 
    Mu J, Awadalla P, Duan J, McGee KM, Joy DA et al. 2005. Recombination hotspots and population structure in Plasmodium falciparum. PLOS Biol 3:10e335
    [Google Scholar]
  89. 89. 
    Mu J, Ferdig MT, Feng X, Joy DA, Duan J et al. 2003. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol. Microbiol. 49:4977–89
    [Google Scholar]
  90. 90. 
    Mu J, Myers RA, Jiang H, Liu S, Ricklefs S et al. 2010. Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs. Nat. Genet. 42:3268–71
    [Google Scholar]
  91. 91. 
    Mukherjee A, Bopp S, Magistrado P, Wong W, Daniels R et al. 2017. Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia. Malar. J. 16:1195
    [Google Scholar]
  92. 92. 
    Nair S, Miller B, Barends M, Jaidee A, Patel J et al. 2008. Adaptive copy number evolution in malaria parasites. PLOS Genet 4:10e1000243
    [Google Scholar]
  93. 93. 
    Nair S, Williams JT, Brockman A, Paiphun L, Mayxay M et al. 2003. A selective sweep driven by pyrimethamine treatment in Southeast Asian malaria parasites. Mol. Biol. Evol. 20:91526–36
    [Google Scholar]
  94. 94. 
    Nash D, Nair S, Mayxay M, Newton PN, Guthmann J-P et al. 2005. Selection strength and hitchhiking around two anti-malarial resistance genes. Proc. R. Soc. B 272:15681153–61
    [Google Scholar]
  95. 95. 
    Neafsey DE, Schaffner SF, Volkman SK, Park D, Montgomery P et al. 2008. Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence. Genome Biol 9:12R171
    [Google Scholar]
  96. 96. 
    Nguyen-Dinh P, Trager W. 1978. Chloroquine resistance produced in vitro in an African strain of human malaria. Science 200:43481397–98
    [Google Scholar]
  97. 97. 
    Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM 2008. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 359:242619–20
    [Google Scholar]
  98. 98. 
    Nzila-Mounda A, Mberu EK, Sibley CH, Plowe CV, Winstanley PA, Watkins WM 1998. Kenyan Plasmodium falciparum field isolates: correlation between pyrimethamine and chlorcycloguanil activity in vitro and point mutations in the dihydrofolate reductase domain. Antimicrob. Agents Chemother. 42:1164–69
    [Google Scholar]
  99. 99. 
    Oduola AMJ, Milhous WK, Weatherly NF, Bowdre JH, Desjardins RE 1988. Plasmodium falciparum: Induction of resistance to mefloquine in cloned strains by continuous drug exposure in vitro. Exp. Parasitol. 67:2354–60
    [Google Scholar]
  100. 100. 
    Okombo J, Kiara SM, Rono J, Mwai L, Pole L et al. 2010. In vitro activities of quinine and other antimalarials and pfnhe polymorphisms in Plasmodium isolates from Kenya. Antimicrob. Agents Chemother. 54:83302–7
    [Google Scholar]
  101. 101. 
    Park DJ, Lukens AK, Neafsey DE, Schaffner SF, Chang H-H et al. 2012. Sequence-based association and selection scans identify drug resistance loci in the Plasmodium falciparum malaria parasite. PNAS 109:3213052–57
    [Google Scholar]
  102. 102. 
    Peel SA, Merritt SC, Handy J, Baric RS 1993. Derivation of highly mefloquine-resistant lines from Plasmodium falciparum in vitro. Am. J. Trop. Med. Hyg. 48:3385–97
    [Google Scholar]
  103. 103. 
    Pe'er I, Yelensky R, Altshuler D, Daly MJ 2008. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32:4381–85
    [Google Scholar]
  104. 104. 
    Penman B, Buckee C, Gupta S, Nee S 2010. Genome-wide association studies in Plasmodium species. BMC Biol 8:90
    [Google Scholar]
  105. 105. 
    Peterson DS, Walliker D, Wellems TE 1988. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. PNAS 85:239114–18
    [Google Scholar]
  106. 106. 
    Pickard AL, Wongsrichanalai C, Purfield A, Kamwendo D, Emery K et al. 2003. Resistance to antimalarials in Southeast Asia and genetic polymorphisms in pfmdr1.Antimicrob. Agents Chemother 47:82418–23
    [Google Scholar]
  107. 107. 
    Pillai DR, Labbé AC, Vanisaveth V, Hongvangthong B, Pomphida S et al. 2001. Plasmodium falciparum malaria in Laos: chloroquine treatment outcome and predictive value of molecular markers. J. Infect. Dis. 183:5789–95
    [Google Scholar]
  108. 108. 
    Plowe CV, Cortese JF, Djimde A, Nwanyanwu OC, Watkins WM et al. 1997. Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfadoxine use and resistance. J. Infect. Dis. 176:61590–96
    [Google Scholar]
  109. 109. 
    Price RN, Cassar C, Brockman A, Duraisingh M, van Vugt M et al. 1999. The pfmdr1 gene is associated with a multidrug-resistant phenotype in Plasmodium falciparum from the western border of Thailand. Antimicrob. Agents Chemother. 43:122943–49
    [Google Scholar]
  110. 110. 
    Price RN, Uhlemann A-C, Brockman A, McGready R, Ashley E et al. 2004. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364:9432438–47
    [Google Scholar]
  111. 111. 
    Raman J, Kagoro FM, Mabuza A, Malatje G, Reid A et al. 2019. Absence of kelch13 artemisinin resistance markers but strong selection for lumefantrine-tolerance molecular markers following 18 years of artemisinin-based combination therapy use in Mpumalanga Province, South Africa (2001–2018). Malar. J. 18:1280
    [Google Scholar]
  112. 112. 
    Ritchie GY, Mungthin M, Green JE, Bray PG, Hawley SR, Ward SA 1996. In vitro selection of halofantrine resistance in Plasmodium falciparum is not associated with increased expression of Pgh1. Mol. Biochem. Parasitol. 83:135–46
    [Google Scholar]
  113. 113. 
    Rocamora F, Zhu L, Liong KY, Dondorp A, Miotto O et al. 2018. Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites. PLOS Pathog 14:3e1006930
    [Google Scholar]
  114. 114. 
    JM, Kaslow SR, Krause MA, Melendez-Muniz VA, Salzman RE et al. 2018. Artemisinin resistance phenotypes and K13 inheritance in a Plasmodium falciparum cross and Aotus model. PNAS 115:4912513–18
    [Google Scholar]
  115. 115. 
    JM, Twu O, Hayton K, Reyes S, Fay MP et al. 2009. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. PNAS 106:4518883–89
    [Google Scholar]
  116. 116. 
    Schwöbel B, Alifrangis M, Salanti A, Jelinek T 2003. Different mutation patterns of atovaquone resistance to Plasmodium falciparum in vitro and in vivo: rapid detection of codon 268 polymorphisms in the cytochrome b as potential in vivo resistance marker. Malar. J. 2:5
    [Google Scholar]
  117. 117. 
    Silva M, Calçada C, Teixeira M, Veiga MI, Ferreira PE 2020. Multigenic architecture of piperaquine resistance trait in Plasmodium falciparum. Lancet Infect. Dis 20:126–27
    [Google Scholar]
  118. 118. 
    Sinou V, Quang LH, Pelleau S, Huong VN, Huong NT et al. 2011. Polymorphism of Plasmodium falciparum Na+/H+ exchanger is indicative of a low in vitro quinine susceptibility in isolates from Viet Nam. Malar. J. 10:164
    [Google Scholar]
  119. 119. 
    Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V et al. 2015. Drug resistance: K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347:6220428–31
    [Google Scholar]
  120. 120. 
    Su X, Ferdig MT, Huang Y, Huynh CQ, Liu A et al. 1999. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 286:54431351–53
    [Google Scholar]
  121. 121. 
    Su X, Hayton K, Wellems TE 2007. Genetic linkage and association analyses for trait mapping in Plasmodium falciparum. Nat. Rev. Genet 8:7497–506
    [Google Scholar]
  122. 122. 
    Su X, Kirkman LA, Fujioka H, Wellems TE 1997. Complex polymorphisms in an approximately 330 kDa protein are linked to chloroquine-resistant P. falciparum in Southeast Asia and Africa. Cell 91:5593–603
    [Google Scholar]
  123. 123. 
    Takala-Harrison S, Clark TG, Jacob CG, Cummings MP, Miotto O et al. 2013. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. PNAS 110:1240–45
    [Google Scholar]
  124. 124. 
    Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC et al. 2015. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J. Infect. Dis. 211:5670–79
    [Google Scholar]
  125. 125. 
    Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D 2019. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20:8467–84
    [Google Scholar]
  126. 126. 
    Tan JC, Miller BA, Tan A, Patel JJ, Cheeseman IH et al. 2011. An optimized microarray platform for assaying genomic variation in Plasmodium falciparum field populations. Genome Biol 12:4R35
    [Google Scholar]
  127. 127. 
    Tanaka M, Gu HM, Bzik DJ, Li WB, Inselburg J 1990. Mutant dihydrofolate reductase-thymidylate synthase genes in pyrimethamine-resistant Plasmodium falciparum with polymorphic chromosome duplications. Mol. Biochem. Parasitol. 42:183–91
    [Google Scholar]
  128. 128. 
    Taylor AR, Schaffner SF, Cerqueira GC, Nkhoma SC, Anderson TJC et al. 2017. Quantifying connectivity between local Plasmodium falciparum malaria parasite populations using identity by descent. PLOS Genet 13:10e1007065
    [Google Scholar]
  129. 129. 
    Taylor SM, Parobek CM, DeConti DK, Kayentao K, Coulibaly SO et al. 2015. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: a molecular epidemiologic study. J. Infect. Dis. 211:5680–88
    [Google Scholar]
  130. 130. 
    Teuscher F, Chen N, Kyle DE, Gatton ML, Cheng Q 2012. Phenotypic changes in artemisinin-resistant Plasmodium falciparum lines in vitro: evidence for decreased sensitivity to dormancy and growth inhibition. Antimicrob. Agents Chemother. 56:1428–31
    [Google Scholar]
  131. 131. 
    Thaithong S, Chan S-W, Songsomboon S, Wilairat P, Seesod N et al. 1992. Pyrimethamine resistant mutations in Plasmodium falciparum. Mol. Biochem. Parasitol 52:2149–57
    [Google Scholar]
  132. 132. 
    Thaithong S, Ranford-Cartwright LC, Siripoon N, Harnyuttanakorn P, Kanchanakhan NS et al. 2001. Plasmodium falciparum: gene mutations and amplification of dihydrofolate reductase genes in parasites grown in vitro in presence of pyrimethamine. Exp. Parasitol. 98:259–70
    [Google Scholar]
  133. 133. 
    Trager W, Jensen JB. 1976. Human malaria parasites in continuous culture. Science 193:4254673–75
    [Google Scholar]
  134. 134. 
    Vaid A, Ranjan R, Smythe WA, Hoppe HC, Sharma P 2010. PfPI3K, a phosphatidylinositol-3 kinase from Plasmodium falciparum, is exported to the host erythrocyte and is involved in hemoglobin trafficking. Blood 115:122500–7
    [Google Scholar]
  135. 135. 
    Van Tyne D, Park DJ, Schaffner SF, Neafsey DE, Angelino E et al. 2011. Identification and functional validation of the novel antimalarial resistance locus PF10_0355 in Plasmodium falciparum. PLOS Genet 7:4e1001383
    [Google Scholar]
  136. 136. 
    Van Tyne D, Uboldi AD, Healer J, Cowman AF, Wirth DF 2013. Modulation of PF10_0355 (MSPDBL2) alters Plasmodium falciparum response to antimalarial drugs. Antimicrob. Agents Chemother. 57:72937–41
    [Google Scholar]
  137. 137. 
    Vaughan AM, Mikolajczak SA, Wilson EM, Grompe M, Kaushansky A et al. 2012. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. J. Clin. Investig. 122:103618–28
    [Google Scholar]
  138. 138. 
    Vaughan AM, Pinapati RS, Cheeseman IH, Camargo N, Fishbaugher M et al. 2015. Plasmodium falciparum genetic crosses in a humanized mouse model. Nat. Methods 12:7631–33
    [Google Scholar]
  139. 139. 
    Vinayak S, Alam MT, Upadhyay M, Das MK, Dev V et al. 2007. Extensive genetic diversity in the Plasmodium falciparum Na+/H+ exchanger 1 transporter protein implicated in quinine resistance. Antimicrob. Agents Chemother. 51:124508–11
    [Google Scholar]
  140. 140. 
    Volkman SK, Herman J, Lukens AK, Hartl DL 2017. Genome-wide association studies of drug-resistance determinants. Trends Parasitol 33:3214–30
    [Google Scholar]
  141. 141. 
    Volkman SK, Sabeti PC, DeCaprio D, Neafsey DE, Schaffner SF et al. 2007. A genome-wide map of diversity in Plasmodium falciparum. Nat. Genet 39:1113–19
    [Google Scholar]
  142. 142. 
    Walker-Jonah A, Dolan SA, Gwadz RW, Panton LJ, Wellems TE 1992. An RFLP map of the Plasmodium falciparum genome, recombination rates and favored linkage groups in a genetic cross. Mol. Biochem. Parasitol. 51:2313–20
    [Google Scholar]
  143. 143. 
    Walliker D, Carter R, Morgan S 1973. Genetic recombination in Plasmodium berghei. Parasitology 66:2309–20
    [Google Scholar]
  144. 144. 
    Walliker D, Carter R, Sanderson A 1975. Genetic studies on Plasmodium chabaudi: recombination between enzyme markers. Parasitology 70:119–24
    [Google Scholar]
  145. 145. 
    Walliker D, Quakyi IA, Wellems TE, McCutchan TF, Szarfman A et al. 1987. Genetic analysis of the human malaria parasite Plasmodium falciparum. . Science 236:48091661–66
    [Google Scholar]
  146. 146. 
    Wang P, Read M, Sims PF, Hyde JE 1997. Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilization. Mol. Microbiol. 23:5979–86
    [Google Scholar]
  147. 147. 
    Wang Z, Cabrera M, Yang J, Yuan L, Gupta B et al. 2016. Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in Plasmodium falciparum from China-Myanmar border. Sci. Rep. 6:33891
    [Google Scholar]
  148. 148. 
    Wang Z, Wang Y, Cabrera M, Zhang Y, Gupta B et al. 2015. Artemisinin resistance at the China-Myanmar border and association with mutations in the K13 propeller gene. Antimicrob. Agents Chemother. 59:116952–59
    [Google Scholar]
  149. 149. 
    Wellems TE, Panton LJ, Gluzman IY, do Rosario VE, Gwadz RW et al. 1990. Chloroquine resistance not linked to mdr-like genes in a Plasmodiumfalciparum cross. Nature 345:6272253–55
    [Google Scholar]
  150. 150. 
    Wellems TE, Plowe CV. 2001. Chloroquine-resistant malaria. J. Infect. Dis. 184:6770–76
    [Google Scholar]
  151. 151. 
    Wellems TE, Walker-Jonah A, Panton LJ 1991. Genetic mapping of the chloroquine-resistance locus on Plasmodium falciparum chromosome 7. PNAS 88:83382–86
    [Google Scholar]
  152. 152. 
    Wendler JP, Okombo J, Amato R, Miotto O, Kiara SM et al. 2014. A genome wide association study of Plasmodium falciparum susceptibility to 22 antimalarial drugs in Kenya. PLOS ONE 9:5e96486
    [Google Scholar]
  153. 153. 
    White NJ. 2011. The parasite clearance curve. Malar. J. 10:278
    [Google Scholar]
  154. 154. 
    White NJ. 2017. Malaria parasite clearance. Malar. J. 16:188
    [Google Scholar]
  155. 155. 
    Wilson CM, Volkman SK, Thaithong S, Martin RK, Kyle DE et al. 1993. Amplification of pfmdr1 associated with mefloquine and halofantrine resistance in Plasmodium falciparum from Thailand. Mol. Biochem. Parasitol. 57:1151–60
    [Google Scholar]
  156. 156. 
    Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P et al. 2013. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect. Dis. 13:121043–49
    [Google Scholar]
  157. 157. 
    Witkowski B, Duru V, Khim N, Ross LS, Saintpierre B et al. 2017. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect. Dis. 17:2174–83
    [Google Scholar]
  158. 158. 
    Witkowski B, Lelièvre J, Barragán MJL, Laurent V, Su X et al. 2010. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob. Agents Chemother. 54:51872–77
    [Google Scholar]
  159. 159. 
    Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J et al. 2002. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418:6895320–23
    [Google Scholar]
  160. 160. 
    World Health Organ 2019. World malaria report 2019 Rep., World Health Organ Geneva:
  161. 161. 
    Yuan J, Johnson RL, Huang R, Wichterman J, Jiang H et al. 2009. Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.Nat. Chem. Biol 5:10765–71
    [Google Scholar]
  162. 162. 
    Zhang Y, Meshnick SR. 1991. Inhibition of Plasmodium falciparum dihydropteroate synthetase and growth in vitro by sulfa drugs. Antimicrob. Agents Chemother. 35:2267–71
    [Google Scholar]
/content/journals/10.1146/annurev-micro-012220-064343
Loading
/content/journals/10.1146/annurev-micro-012220-064343
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error