Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Special Feature: Article
  • Published:

Cutting the Gordian knot: early and complete amino acid sequence confirmation of class II lasso peptides by HCD fragmentation

Abstract

Lasso peptides are a diverse class of ribosomally synthesized and post-translationally modified peptides (RiPPs). Their proteolytic and thermal stability alongside their growing potential as therapeutics has increased attention to these antimicrobial peptides. With the advent of genome mining, the discovery of RiPPs allows for the accurate prediction of putatively encoded structures, however, MSn experiments only provide partial sequence confirmation, therefore 2D NMR experiments are necessary for characterisation. Multiple MS/MS techniques were applied to two structurally characterized lasso peptides, huascopeptin and leepeptin, and one uncharacterized lasso peptide, citrulassin C, which was not isolable in sufficient quantity for NMR analysis. We have shown that MS2 can be used to elucidate the full amino acid sequences previously predicted with genome mining for this compound class. HCD was able to open the macrocycles and fragment the newly opened linear peptides, confirming the complete amino acid sequences of the characterised lasso peptides. In addition, to determine if this technique could be applied at the earliest stages of the isolation process, we targeted a lasso peptide found by genome mining, citrulassin C, and were able to fully elucidate the amino acid sequence using only MS2 from a semi-crude extract of Streptomyces huasconensis HST28T.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hegemann JD, Zimmermann M, Xie X, Marahiel MA. Lasso peptides: an intriguing class of bacterial natural products. Acc Chem Res. 2015;48:1909–19.

    Article  CAS  Google Scholar 

  2. Knappe TA, Linne U, Xie X, Marahiel MA. The glucagon receptor antagonist BI-32169 constitutes a new class of lasso peptides. FEBS Lett. 2010;584:785–9.

    Article  CAS  Google Scholar 

  3. Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Omura S. Lariatins, antimycobacterial peptides produced by Rhodococcus sp. K01-B0171, have a lasso structure. J Am Chem Soc. 2006;128:7486–91.

    Article  CAS  Google Scholar 

  4. Detlefsen DJ, Hill SE, Volk KJ, Klohr SE, Tsunakawa M, Furumai T, et al. Siamycins I and II, new anti-HIV-1 peptides: II. Sequence analysis and structure determination of siamycin I. J Antibiot. 1995;48:1515–7.

    Article  CAS  Google Scholar 

  5. Gavrish E, Sit CS, Cao S, Kandror O, Spoering A, Peoples A, et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem Biol. 2014;21:509–18.

    Article  CAS  Google Scholar 

  6. Metelev M, Tietz JI, Melby JO, Blair PM, Zhu L, Livnat I, et al. Structure, bioactivity, and resistance mechanism of streptomonomicin, an unusual lasso Peptide from an understudied halophilic actinomycete. Chem Biol. 2015;22:241–50.

    Article  CAS  Google Scholar 

  7. Um S, Kim YJ, Kwon H, Wen H, Kim SH, Kwon HC, et al. Sungsanpin, a lasso peptide from a deep-sea streptomycete. J Nat Prod. 2013;76:873–9.

    Article  CAS  Google Scholar 

  8. Elsayed SS, Trusch F, Deng H, Raab A, Prokes I, Busarakam K, et al. Chaxapeptin, a Lasso Peptide from Extremotolerant Streptomyces leeuwenhoekii Strain C58 from the Hyperarid Atacama Desert. J Org Chem. 2015;80:10252–60.

    Article  CAS  Google Scholar 

  9. Weber W, Fischli W, Hochuli E, Kupfer E, Weibel EK. Anantin-a peptide antagonist of the atrial natriuretic factor (ANF). I. Producing organism, fermentation, isolation and biological activity. J Antibiot. 1991;44:164–71.

    Article  CAS  Google Scholar 

  10. Potterat O, Wagner K, Gemmecker G, Mack J, Puder C, Vettermann R, et al. BI-32169, a bicyclic 19-peptide with strong glucagon receptor antagonist activity from Streptomyces sp. J Nat Prod. 2004;67:1528–31.

    Article  CAS  Google Scholar 

  11. Cheung-Lee WL, Parry ME, Jaramillo Cartagena A, Darst SA, Link AJ. Discovery and structure of the antimicrobial lasso peptide citrocin. J Biol Chem. 2019;294:6822–30.

    Article  CAS  Google Scholar 

  12. Kaweewan I, Hemmi H, Komaki H, Harada S, Kodani S. Isolation and structure determination of a new lasso peptide specialicin based on genome mining. Bioorg Medicinal Chem. 2018;26:6050–5.

    Article  CAS  Google Scholar 

  13. Santos-Aberturas J, Chandra G, Frattaruolo L, Lacret R, Pham TH, Vior NM, et al. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Res. 2019;47:4624–37.

    Article  CAS  Google Scholar 

  14. Hudson G, Burkhart B, DiCaprio A, Schwalen C, Kille B, Pogorelov T, et al. Bioinformatic mapping of radical S-adenosylmethionine-dependent ribosomally synthesized and post-translationally modified peptides identifies new Cα, Cβ, and Cγ-linked thioether-containing peptides. J Am Chem Soc. 2019;141:8228–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tietz JI, Schwalen CJ, Patel PS, Maxson T, Blair PM, Tai HC, et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat Chem Biol. 2017;13:470–8.

    Article  CAS  Google Scholar 

  16. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.

    Article  CAS  Google Scholar 

  17. Paizs B, Suhai S. Fragmentation pathways of protonated peptides. Mass Spectrom Rev. 2005;24:508–48.

    Article  CAS  Google Scholar 

  18. Ngoka LC, Gross ML. Multistep tandem mass spectrometry for sequencing cyclic peptides in an ion-trap mass spectrometer. J Am Soc Mass Spectrom. 1999;10:732–46.

    Article  CAS  Google Scholar 

  19. Medzihradszky KF, Chalkley RJ. Lessons in de novo peptide sequencing by tandem mass spectrometry. Mass Spec Rev. 2013;34:43–63.

    Article  Google Scholar 

  20. Mohimani H, Gurevich A, Mikheenko A, Garg N, Nothias L, Ninomiya A, et al. Dereplication of peptidic natural products through database search of mass spectra. Nat Chem Biol. 2017;13:30–7.

    Article  CAS  Google Scholar 

  21. Mohimani H, Kersten RD, Liu WT, Wang M, Purvine SO, Wu S, et al. Automated genome mining of ribosomal peptide natural products. ACS Chem Biol. 2014;9:1545–51.

    Article  CAS  Google Scholar 

  22. Mohimani H, Yang YL, Liu WT, Hsieh PW, Dorrestein PC, Pevzner PA. Sequencing cyclic peptides by multistage mass spectrometry. Proteomics. 2011;11:3642–50.

    Article  CAS  Google Scholar 

  23. Niedermeyer, Timo H J, Strohalm M. mMass as a software tool for the annotation of cyclic peptide tandem mass spectra. PLoS ONE. 2012;7:e44913.

    Google Scholar 

  24. Xie X, Marahiel MA. NMR as an effective tool for the structure determination of lasso peptides. Chem Biochem. 2012;13:621–5.

    CAS  Google Scholar 

  25. Rosengren KJ, Clark RJ, Daly NL, Göransson U, Jones A, Craik DJ. Microcin J25 Has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. J Am Chem Soc. 2003;125:12464–74.

    Article  CAS  Google Scholar 

  26. Wilson K, Kalkum M, Ottesen J, Yuzenkova J, Chait BT, Landick R, et al. Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc. 2003;125:12475–83.

    Article  CAS  Google Scholar 

  27. Jeanne Dit Fouque K, Lavanant H, Zirah S, Hegemann JD, Fage CD, Marahiel MA, et al. General rules of fragmentation evidencing lasso structures in CID and ETD. Analyst. 2018;143:1157–70.

    Article  CAS  Google Scholar 

  28. Dit Fouque KJ, Moreno J, Hegemann JD, Zirah S, Rebuffat S, Fernandez-Lima F. Identification of lasso peptide topologies using native nanoelectrospray ionization-trapped ion mobility spectrometry—mass spectrometry. Anal Chem. 2018;90:5139–46.

    Article  Google Scholar 

  29. Cortés-Albayay C, Jarmusch S, Trusch F, Ebel R, Andrews B, Jaspars M, et al. Downsizing class II lasso peptides: genome mining-guided isolation of huascopeptin containing the first Gly1-Asp7 macrocycle. J Org Chem. 2020;85:1661–7.

    Article  Google Scholar 

  30. Gomez-Escribano JP, Castro JF, Razmilic V, Jarmusch SA, Saalbach G, Ebel R, et al. Heterologous expression of a cryptic gene cluster from Streptomyces leeuwenhoekii C34T yields a novel lasso peptide, leepeptin. Appl Environ Microbiol. 2019;85:e01752–19.

    Article  CAS  Google Scholar 

  31. Elashal HE, Cohen RD, Elashal HE, Zong C, Link AJ, Raj M. Cyclic and lasso peptides: sequence determination, topology analysis, and rotaxane formation. Angew Chem Int Ed Engl. 2018;57:6150–4.

    Article  CAS  Google Scholar 

  32. Brodbelt JS. Ion activation methods for peptides and proteins. Anal Chem. 2016;88:30–51.

    Article  CAS  Google Scholar 

  33. Chekan JR, Koos JD, Zong C, Maksimov MO, Link AJ, Nair SK. Structure of the lasso peptide isopeptidase identifies a topology for processing threaded substrates. J Am Chem Soc. 2016;138:16452–8.

    Article  CAS  Google Scholar 

  34. Okoro CK, Brown R, Jones AL, Andrews BA, Asenjo JA, Goodfellow M, et al. Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie Van Leeuwenhoek. 2009;95:121–33.

    Article  Google Scholar 

  35. Cortés-Albayay C, Dorador C, Schumann P, Andrews B, Asenjo J, Nouioui I. Streptomyces huasconensis sp. nov., an haloalkalitolerant actinobacterium isolated from a high altitude saline wetland at the Chilean Altiplano. Int J Syst Evolut Microbiol. 2019;69:2315–22.

    Article  Google Scholar 

  36. Rateb ME, Houssen WE, Harrison WT, Deng H, Okoro CK, Asenjo JA, et al. Diverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environment. J Nat Prod. 2011;74:1965–71.

    Article  CAS  Google Scholar 

  37. Goodfellow M, Nouioui I, Sanderson R, Xie F, Bull AT. Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie Van Leeuwenhoek. 2018;111:1315–32.

    Article  CAS  Google Scholar 

  38. Manfio GP, Atalan E, Zakrzewska-Czerwinska J, Mordarski M, Rodriguez C, Collins MD, et al. Classification of novel soil streptomycetes as Streptomyces aureus sp. nov., Streptomyces laceyi sp. nov. and Streptomyces sanglieri sp. nov. Antonie Van Leeuwenhoek. 2003;83:245–55.

    Article  CAS  Google Scholar 

  39. Rateb ME, Houssen WE, Arnold M, Abdelrahman MH, Deng H, Harrison WT, et al. Chaxamycins A-D, bioactive ansamycins from a hyper-arid desert Streptomyces sp. J Nat Prod. 2011;74:1491–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SAJ would like to thank the University of Aberdeen for an Elphinstone Scholarship. CC-A thanks CONICYT PFCHA/DOCTORADO BECAS CHILE/2016 (#21160585) fellowship and CONICYT Basal Centre Grant for the Centre for Biotechnology and Bioengineering, CeBiB (FB0001). JFC also thanks CONICYT for a National PhD Scholarship (#21110356) and a Visiting Student Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Jaspars.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This study is dedicated to Professor William Fenical in recognition of his work on establishing marine microbial natural products as a force to be reckoned with.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarmusch, S.A., Feldmann, I., Blank-Landeshammer, B. et al. Cutting the Gordian knot: early and complete amino acid sequence confirmation of class II lasso peptides by HCD fragmentation. J Antibiot 73, 772–779 (2020). https://doi.org/10.1038/s41429-020-00369-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-00369-z

This article is cited by

Search

Quick links