Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolving metabolic landscape of chromatin biology and epigenetics

An Author Correction to this article was published on 25 September 2020

This article has been updated

Abstract

Molecular inputs to chromatin via cellular metabolism are modifiers of the epigenome. These inputs — which include both nutrient availability as a result of diet and growth factor signalling — are implicated in linking the environment to the maintenance of cellular homeostasis and cell identity. Recent studies have demonstrated that these inputs are much broader than had previously been known, encompassing metabolism from a wide variety of sources, including alcohol and microbiotal metabolism. These factors modify DNA and histones and exert specific effects on cell biology, systemic physiology and pathology. In this Review, we discuss the nature of these molecular networks, highlight their role in mediating cellular responses and explore their modifiability through dietary and pharmacological interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the mechanisms involved in the metabolic regulation of epigenetics.
Fig. 2: Metabolic pathways producing chromatin-modifying metabolites.
Fig. 3: Physiological contexts of the metabolism–epigenetics axis.
Fig. 4: Influences of environmental factors on histone acetylation and methylation.

Similar content being viewed by others

Change history

  • 25 September 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Alberts, B. Molecular Biology of the Cell 6th ed. (Garland Science, Taylor and Francis Group, 2015).

  2. Hyun, K., Jeon, J., Park, K. & Kim, J. Writing, erasing and reading histone lysine methylations. Exp. Mol. Med. 49, e324 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schuettengruber, B., Bourbon, H. M., Di Croce, L. & Cavalli, G. Genome regulation by Polycomb and Trithorax: 70 years and counting. Cell 171, 34–57 (2017).

    CAS  PubMed  Google Scholar 

  4. Stillman, B. Histone modifications: insights into their influence on gene expression. Cell 175, 6–9 (2018).

    CAS  PubMed  Google Scholar 

  5. Li, X., Egervari, G., Wang, Y., Berger, S. L. & Lu, Z. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat. Rev. Mol. Cell Biol. 19, 563–578 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan, J. C. & Maze, I. Nothing is yet set in (hi)stone: novel post-translational modifications regulating chromatin function. Trends Biochem. Sci. https://doi.org/10.1016/j.tibs.2020.05.009 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wu, T. P. et al. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature 532, 329–333 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiao, C.-L. et al. N6-methyladenine DNA modification in the human genome. Mol. Cell 71, 306–318.e307 (2018).

    CAS  PubMed  Google Scholar 

  9. Galligan, J. J. & Marnett, L. J. Histone adduction and its functional impact on epigenetics. Chem. Res. Toxicol. 30, 376–387 (2017).

    CAS  PubMed  Google Scholar 

  10. Arango, D. et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175, 1872–1886.e1824 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yue, Y., Liu, J. & He, C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Gene Dev. 29, 1343–1355 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chandel, N. S. Navigating Metabolism (Cold Spring Harbor Laboratory Press, 2015).

  13. Reid, M. A., Dai, Z. W. & Locasale, J. W. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298–1306 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cavalli, G. & Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 571, 489–499 (2019).

    CAS  PubMed  Google Scholar 

  15. Tang, S. et al. Methionine metabolism is essential for SIRT1-regulated mouse embryonic stem cell maintenance and embryonic development. EMBO J. 36, 3175–3193 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yucel, N. et al. Glucose metabolism drives histone acetylation landscape transitions that dictate muscle stem cell function. Cell Rep. 27, 3939–3955.e3936 (2019). This study shows that glucose metabolism influences differentiation by regulating histone acetylation and chromatin accessibility.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu, W. et al. One-carbon metabolism supports S-adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol. Cell 75, 1147–1160.e1145 (2019). This study shows that upregulation of both one-carbon metabolism and H3K36me3 is involved in macrophage activation.

    CAS  PubMed  Google Scholar 

  18. Wang, Z. et al. Methionine is a metabolic dependency of tumor-initiating cells. Nat. Med. 25, 825–837 (2019). This report defines a mechanism for methionine metabolism to drive tumour initiation by modulating epigenetics.

    CAS  PubMed  Google Scholar 

  19. Reina-Campos, M. et al. Increased serine and one-carbon pathway metabolism by PKCλ/ι deficiency promotes neuroendocrine prostate cancer. Cancer Cell 35, 385–400.e389 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fellows, R. et al. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat. Commun. 9, 105 (2018). This study establishes a link between gut microbiota and histone crotonylation.

    PubMed  PubMed Central  Google Scholar 

  21. Kaelin, W. G. Jr. & McKnight, S. L. Influence of metabolism on epigenetics and disease. Cell 153, 56–69 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Carrer, A. & Wellen, K. E. Metabolism and epigenetics: a link cancer cells exploit. Curr. Opin. Biotechnol. 34, 23–29 (2015).

    CAS  PubMed  Google Scholar 

  23. Etchegaray, J. P. & Mostoslavsky, R. Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol. Cell 62, 695–711 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Haws, S. A. et al. Methyl-metabolite depletion elicits adaptive responses to support heterochromatin stability and epigenetic persistence. Mol. Cell 78, 210–223.e218 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sabari, B. R. et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol. Cell 58, 203–215 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bulusu, V. et al. Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep. 18, 647–658 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mews, P. et al. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546, 381–386 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nagaraj, R. et al. Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in mammalian zygotic genome activation. Cell 168, 210–223.e211 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sivanand, S. et al. Nuclear acetyl-CoA production by ACLY promotes homologous recombination. Mol. Cell 67, 252–265.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Masui, K. et al. mTORC2 links growth factor signaling with epigenetic regulation of iron metabolism in glioblastoma. J. Biol. Chem. 294, 19740–19751 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. Sdelci, S. et al. MTHFD1 interaction with BRD4 links folate metabolism to transcriptional regulation. Nat. Genet. 51, 990–998 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun, R. C. et al. Nuclear glycogenolysis modulates histone acetylation in human non-small cell lung cancers. Cell Metab. 30, 903–916.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sperber, H. et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat. Cell Biol. 17, 1523–1535 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ye, C. Q., Sutter, B. M., Wang, Y., Kuang, Z. & Tu, B. P. A metabolic function for phospholipid and histone methylation. Mol. Cell 66, 180–193.e8 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye, C. Q. et al. Demethylation of the protein phosphatase PP2A promotes demethylation of histones to enable their function as a methyl group sink. Mol. Cell 73, 1115–1126.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484 e421 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nair, S. J. et al. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat. Struct. Mol. Biol. 26, 193–203 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Ries, R. J. et al. m6A enhances the phase separation potential of mRNA. Nature 571, 424–428 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ravanel, S., Gakière, B., Job, D. & Douce, R. The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl Acad. Sci. USA 95, 7805 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sanderson, S. M., Gao, X., Dai, Z. W. & Locasale, J. W. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat. Rev. Cancer 19, 625–637 (2019).

    CAS  PubMed  Google Scholar 

  47. Mattocks, D. A. L. et al. Short term methionine restriction increases hepatic global DNA methylation in adult but not young male C57BL/6J mice. Exp. Gerontol. 88, 1–8 (2017).

    CAS  PubMed  Google Scholar 

  48. Zhang, N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals. Anim. Nutr. 4, 11–16 (2018).

    PubMed  Google Scholar 

  49. Shyh-Chang, N. et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222–226 (2013).

    PubMed  Google Scholar 

  50. Shiraki, N. et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 19, 780–794 (2014).

    CAS  PubMed  Google Scholar 

  51. Dai, Z., Mentch, S. J., Gao, X., Nichenametla, S. N. & Locasale, J. W. Methionine metabolism influences genomic architecture and gene expression through H3K4me3 peak width. Nat. Commun. 9, 1955 (2018). This study investigates how methionine availability influences quantitative parameters of H3K4me3 in cancer cells and mouse liver.

    PubMed  PubMed Central  Google Scholar 

  52. Mentch, S. J. et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22, 861–873 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ding, W. et al. Stress-responsive and metabolic gene regulation are altered in low S- adenosylmethionine. PLoS Genet. 14, e1007812 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. Sinclair, L. V. et al. Antigen receptor control of methionine metabolism in T cells. eLife 8, e44210 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. Roy, D. G. et al. Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. Cell Metab. 31, 250–266.e259 (2020). This study highlights the importance of methionine metabolism and methionine-derived histone methylation for supporting T cell function.

    CAS  PubMed  Google Scholar 

  56. Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shi, Y. Histone lysine demethylases: emerging roles in development, physiology and disease. Nat. Rev. Genet. 8, 829–833 (2007).

    CAS  PubMed  Google Scholar 

  58. Young, J. I., Zuchner, S. & Wang, G. F. Regulation of the epigenome by vitamin C. Annu. Rev. Nutr. 35, 545–564 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pan, M. et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 18, 1090–1101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013 (2019). This study develops a promising strategy for enhancing antitumour immune response by targeting the metabolism–epigenetics axis.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang, Y. et al. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat. Commun. 10, 2935 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Schvartzman, J.-M., Reuter, V. P., Koche, R. P. & Thompson, C. B. 2-hydroxyglutarate inhibits MyoD-mediated differentiation by preventing H3K9 demethylation. Proc. Natl Acad. Sci. USA 116, 12851 (2019). This study defines a novel mechanism for 2-HG to regulate differentiation and tumour progression by affecting H3K9 methylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Flavahan, W. A. et al. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature 575, 229–233 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sciacovelli, M. et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537, 544–547 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bazopoulou, D. et al. Developmental ROS individualizes organismal stress resistance and lifespan. Nature 576, 301–305 (2019). This study shows that redox balance affects longevity by changing the epigenomic landscape in worms.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Thienpont, B. et al. Tumour hypoxia causes DNA hyper-methylation by reducing TET activity. Nature 537, 63–68 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chakraborty, A. A. et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science 363, 1217–1222 (2019). This study and related work link oxygen availability and hypoxia to histone and DNA methylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Batie, M. et al. Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science 363, 1222–1226 (2019).

    CAS  PubMed  Google Scholar 

  69. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cluntun, A. A. et al. The rate of glycolysis quantitatively mediates specific histone acetylation sites. Cancer Metab. 3, 10 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Liu, X. et al. Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 175, 502–513.e513 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mews, P. et al. Alcohol metabolism contributes to brain histone acetylation. Nature 574, 717–721 (2019). This study shows that alcohol uptake impacts learning, memory and behaviour by increasing brain histone acetylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sebastián, C. & Mostoslavsky, R. The various metabolic sources of histone acetylation. Trends Endocrinol. Metab. 28, 85–87 (2017).

    PubMed  Google Scholar 

  74. Bose, S., Ramesh, V. & Locasale, J. W. Acetate metabolism in physiology, cancer, and beyond. Trends Cell Biol. 29, 695–703 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. McDonnell, E. et al. Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Rep. 17, 1463–1472 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    CAS  PubMed  Google Scholar 

  77. Chalkiadaki, A. & Guarente, L. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 8, 287–296 (2012).

    CAS  PubMed  Google Scholar 

  78. Sabari, B. R., Zhang, D., Allis, C. D. & Zhao, Y. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 18, 90–101 (2017).

    CAS  PubMed  Google Scholar 

  79. Dutta, A., Abmayr, S. M. & Workman, J. L. Diverse activities of histone acylations connect metabolism to chromatin function. Mol. Cell 63, 547–552 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hirschey, M. D. & Zhao, Y. Metabolic regulation by lysine malonylation, succinylation, and glutarylation. Mol. Cell. Proteomics 14, 2308–2315 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Simithy, J. et al. Characterization of histone acylations links chromatin modifications with metabolism. Nat. Commun. 8, 1141 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Wang, Y. et al. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase. Nature 552, 273–277 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wagner, G. R. & Hirschey, M. D. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol. Cell 54, 5–16 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Trefely, S., Lovell, C. D., Snyder, N. W. & Wellen, K. E. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol. Metab. 38, 100941 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019). This study identifies histone lactylation as a novel epigenetic modification involved in active transcription.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang, H. et al. Lysine benzoylation is a histone mark regulated by SIRT2. Nat. Commun. 9, 3374 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. Goudarzi, A. et al. Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Mol. Cell 62, 169–180 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Xie, Z. et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol. Cell 62, 194–206 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang, X. et al. Molecular basis for hierarchical histone de-β-hydroxybutyrylation by SIRT3. Cell Discov. 5, 35 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. Gowans, G. J. et al. Recognition of histone crotonylation by Taf14 links metabolic state to gene expression. Mol. Cell 76, 909–921.e903 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, Q. et al. Elevated H3K79 homocysteinylation causes abnormal gene expression during neural development and subsequent neural tube defects. Nat. Commun. 9, 3436 (2018). This study shows that H3K79 homocysteinylation is related to neural development.

    PubMed  PubMed Central  Google Scholar 

  92. Biskup, C. S. et al. Effects of acute tryptophan depletion on brain serotonin function and concentrations of dopamine and norepinephrine in C57BL/6J and BALB/cJ mice. PLoS ONE 7, e35916 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Solon-Biet, S. M. et al. Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat. Metab. 1, 532–545 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Farrelly, L. A. et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567, 535–539 (2019). This study identifies histone serotonylation as a novel epigenetic modification and investigates its roles in regulating gene expression and neuronal differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Meiser, J., Weindl, D. & Hiller, K. Complexity of dopamine metabolism. Cell Commun. Signal. 11, 34 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Montgomery, A. J., McTavish, S. F., Cowen, P. J. & Grasby, P. M. Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an 11Craclopride PET study. Am. J. Psychiatry 160, 1887–1889 (2003).

    PubMed  Google Scholar 

  97. Lepack, A. E. et al. Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science 368, 197–201 (2020). This study identifies histone dopaminylation as a novel epigenetic modification involved in addictive behaviours.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chiaradonna, F., Ricciardiello, F. & Palorini, R. The nutrient-sensing hexosamine biosynthetic pathway as the hub of cancer metabolic rewiring. Cells 7, 53 (2018).

    PubMed Central  Google Scholar 

  99. Ryczko, M. C. et al. Metabolic reprogramming by hexosamine biosynthetic and golgi N-glycan branching pathways. Sci. Rep. 6, 23043 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, S., Roche, K., Nasheuer, H.-P. & Lowndes, N. F. Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J. Biol. Chem. 286, 37483–37495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen, Q., Chen, Y., Bian, C., Fujiki, R. & Yu, X. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493, 561–564 (2013).

    CAS  PubMed  Google Scholar 

  102. Messner, S. & Hottiger, M. O. Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol. 21, 534–542 (2011).

    CAS  PubMed  Google Scholar 

  103. Ciccarone, F., Zampieri, M. & Caiafa, P. PARP1 orchestrates epigenetic events setting up chromatin domains. Semin. Cell Dev. Biol. 63, 123–134 (2017).

    CAS  PubMed  Google Scholar 

  104. Bai, P. & Cantó, C. The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. 16, 290–295 (2012).

    CAS  PubMed  Google Scholar 

  105. Harmel, R. & Fiedler, D. Features and regulation of non-enzymatic post-translational modifications. Nat. Chem. Biol. 14, 244–252 (2018).

    CAS  PubMed  Google Scholar 

  106. Kuo, Y. M. & Andrews, A. J. Quantitating the specificity and selectivity of Gcn5-mediated acetylation of histone H3. PLoS ONE 8, e54896 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Baeza, J., Smallegan, M. J. & Denu, J. M. Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem. Biol. 10, 122–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Paik, W. K., Lee, H. W. & Kim, S. Non-enzymatic methylation of proteins with S-adenosyl-L-methionine. FEBS Lett. 58, 39–42 (1975).

    CAS  PubMed  Google Scholar 

  109. Rydberg, B. & Lindahl, T. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-l-methionine is a potentially mutagenic reaction. EMBO J. 1, 211–216 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gaschler, M. M. & Stockwell, B. R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 482, 419–425 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen, D., Fang, L., Li, H., Tang, M. S. & Jin, C. Cigarette smoke component acrolein modulates chromatin assembly by inhibiting histone acetylation. J. Biol. Chem. 288, 21678–21687 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Carrier, E. J., Zagol-Ikapitte, I., Amarnath, V., Boutaud, O. & Oates, J. A. Levuglandin forms adducts with histone H4 in a cyclooxygenase-2-dependent manner, altering its interaction with DNA. Biochemistry 53, 2436–2441 (2014).

    CAS  PubMed  Google Scholar 

  113. Kold-Christensen, R. & Johannsen, M. Methylglyoxal metabolism and aging-related disease: moving from correlation toward causation. Trends Endocrinol. Metab. 31, 81–92 (2020).

    CAS  PubMed  Google Scholar 

  114. Luengo, A. et al. Reactive metabolite production is a targetable liability of glycolytic metabolism in lung cancer. Nat. Commun. 10, 5604 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Galligan, J. J. et al. Methylglyoxal-derived posttranslational arginine modifications are abundant histone marks. Proc. Natl Acad. Sci. USA 115, 9228–9233 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, Y. et al. Identification of the YEATS domain of GAS41 as a pH-dependent reader of histone succinylation. Proc. Natl Acad. Sci. USA 115, 2365–2370 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Andreeva, A. et al. The apparent deglycase activity of DJ-1 results from the conversion of free methylglyoxal present in fast equilibrium with hemithioacetals and hemiaminals. J. Biol. Chem. 294, 18863–18872 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Uribarri, J. et al. Dietary advanced glycation end products and their role in health and disease. Adv. Nutr. 6, 461–473 (2015).

    PubMed  PubMed Central  Google Scholar 

  119. Salomon, T. et al. Ketone body acetoacetate buffers methylglyoxal via a non-enzymatic conversion during diabetic and dietary ketosis. Cell Chem. Biol. 24, 935–943.e7 (2017).

    CAS  PubMed  Google Scholar 

  120. Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46, D303–D307 (2018).

    CAS  PubMed  Google Scholar 

  121. Shi, H. L., Wei, J. B. & He, C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol. Cell 74, 640–650 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    CAS  PubMed  Google Scholar 

  123. Pendleton, K. E. et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169, 824–835.e14 (2017). This study and related work define a negative feedback mechanism for the maintenance of intracellular SAM levels.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Shima, H. et al. S-adenosylmethionine synthesis is regulated by selective N-6-adenosine methylation and mRNA degradation involving METTL16 and YTHDC1. Cell Rep. 21, 3354–3363 (2017).

    CAS  PubMed  Google Scholar 

  125. Aik, W. et al. Structural basis for inhibition of the fat mass and obesity associated protein (FTO). J. Med. Chem. 56, 3680–3688 (2013).

    CAS  PubMed  Google Scholar 

  126. Gerken, T. et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318, 1469–1472 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Su, R. et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell 172, 90–105.e23 (2018). This study defines a novel antitumour function of 2-HG by modulating RNA methylation.

    CAS  PubMed  Google Scholar 

  128. Mauer, J. et al. FTO controls reversible m6Am RNA methylation during snRNA biogenesis. Nat. Chem. Biol. 15, 340–347 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ito, S. et al. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N-4-acetylcytidine formation in 18 S ribosomal RNA (rRNA). J. Biol. Chem. 289, 35724–35730 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Shyh-Chang, N. & Ng, H.-H. The metabolic programming of stem cells. Genes Dev. 31, 336–346 (2017).

    PubMed  PubMed Central  Google Scholar 

  131. Folmes, C. D. et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14, 264–271 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Panopoulos, A. D. et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 22, 168–177 (2012).

    CAS  PubMed  Google Scholar 

  133. Tsogtbaatar, E., Landin, C., Minter-Dykhouse, K. & Folmes, C. D. L. Energy metabolism regulates stem cell pluripotency. Front. Cell Dev. Biol. 8, 87 (2020).

    PubMed  PubMed Central  Google Scholar 

  134. Ito, K. et al. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science 354, 1156–1160 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Takubo, K. et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12, 49–61 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ito, K. et al. A PML–PPAR–delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18, 1350–1358 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127–137 (2013).

    CAS  PubMed  Google Scholar 

  138. Boon, R. et al. Amino acid levels determine metabolism and CYP450 function of hepatocytes and hepatoma cell lines. Nat. Commun. 11, 1393 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Guijas, C., Montenegro-Burke, J. R., Warth, B., Spilker, M. E. & Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol. 36, 316–320 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Oburoglu, L. et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell 15, 169–184 (2014).

    CAS  PubMed  Google Scholar 

  141. Carey, B. W., Finley, L. W. S., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).

    CAS  PubMed  Google Scholar 

  142. TeSlaa, T. et al. α-Ketoglutarate accelerates the initial differentiation of primed human pluripotent stem cells. Cell Metab. 24, 485–493 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Moussaieff, A. et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 21, 392–402 (2015).

    CAS  PubMed  Google Scholar 

  144. Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, P.-S. et al. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).

    CAS  PubMed  Google Scholar 

  146. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Qiu, J. et al. Acetate promotes T cell effector function during glucose restriction. Cell Rep. 27, 2063–2074.e2065 (2019). This study links acetate availability to T cell activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Liberti, M. V. & Locasale, J. W. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211–218 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    PubMed Central  Google Scholar 

  150. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Nacev, B. A. et al. The expanding landscape of ‘oncohistone’ mutations in human cancers. Nature 567, 473–478 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Gozdecka, M. et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat. Genet. 50, 883–894 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Donaldson-Collier, M. C. et al. EZH2 oncogenic mutations drive epigenetic, transcriptional, and structural changes within chromatin domains. Nat. Genet. 51, 517–528 (2019).

    CAS  PubMed  Google Scholar 

  155. Fujisawa, T. & Filippakopoulos, P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat. Rev. Mol. Cell Biol. 18, 246–262 (2017).

    CAS  PubMed  Google Scholar 

  156. Deribe, Y. L. et al. Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer. Nat. Med. 24, 1047–1057 (2018).

    PubMed Central  Google Scholar 

  157. Suva, M. L., Riggi, N. & Bernstein, B. E. Epigenetic reprogramming in cancer. Science 339, 1567–1570 (2013).

    CAS  PubMed  Google Scholar 

  158. Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science 357, eaal2380 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Feinberg, A. P. The key role of epigenetics in human disease prevention and mitigation. N. Engl. J. Med. 378, 1323–1334 (2018).

    CAS  PubMed  Google Scholar 

  160. Huether, R. et al. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat. Commun. 5, 3630 (2014).

    PubMed  Google Scholar 

  161. Schaefer, I. M., Hornick, J. L. & Bovee, J. V. M. G. The role of metabolic enzymes in mesenchymal tumors and tumor syndromes: genetics, pathology, and molecular mechanisms. Lab. Invest. 98, 414–426 (2018).

    CAS  PubMed  Google Scholar 

  162. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e1 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Losman, J.-A. et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339, 1621–1625 (2013).

    CAS  PubMed  Google Scholar 

  166. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

    CAS  PubMed  Google Scholar 

  168. Golub, D. et al. Mutant isocitrate dehydrogenase inhibitors as targeted cancer therapeutics. Front. Oncol. 9, 417 (2019).

    PubMed  PubMed Central  Google Scholar 

  169. King, A., Selak, M. A. & Gottlieb, E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25, 4675–4682 (2006).

    CAS  PubMed  Google Scholar 

  170. Kaelin, W. G. SDH5 mutations and familial paraganglioma: somewhere Warburg is smiling. Cancer Cell 16, 180–182 (2009).

    CAS  PubMed  Google Scholar 

  171. Cervera, A. M., Bayley, J.-P., Devilee, P. & McCreath, K. J. Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol. Cancer 8, 89 (2009).

    PubMed  PubMed Central  Google Scholar 

  172. Xiao, M. et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Sulkowski, P. L. et al. Oncometabolites suppress DNA repair by disrupting local chromatin signalling. Nature 582, 586–591 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Raffel, S. et al. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature 551, 384–388 (2017). This study shows that 2-HG, fumarate and succinate disrupt DNA repair through histone hypermethylation.

    CAS  PubMed  Google Scholar 

  175. Green, N. H. et al. MTHFD2 links RNA methylation to metabolic reprogramming in renal cell carcinoma. Oncogene 38, 6211–6225 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Kottakis, F. et al. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539, 390–395 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Morris, J. P. et al. α-Ketoglutarate links p53 to cell fate during tumour suppression. Nature 573, 595–599 (2019). This study unravels a novel mechanism for the metabolism–epigenetic axis to mediate tumour-suppressive effects of p53.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Gao, X. et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572, 397–401 (2019). This study shows that dietary modulation of an amino acid results in antitumour effects.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Donohoe, D. R. et al. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov. 4, 1387–1397 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Chalkiadaki, A. & Guarente, L. The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer 15, 608–624 (2015).

    CAS  PubMed  Google Scholar 

  181. Lee, J. V. et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306–319 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Lee, J. V. et al. Acetyl-CoA promotes glioblastoma cell adhesion and migration through Ca(2+)-NFAT signaling. Genes Dev. 32, 497–511 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Gruber, J. J. et al. HAT1 coordinates histone production and acetylation via H4 promoter binding. Mol. Cell 75, 711–724.e715 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 393, 1958–1972 (2019).

    Google Scholar 

  185. Steck, S. E. & Murphy, E. A. Dietary patterns and cancer risk. Nat. Rev. Cancer 20, 125–138 (2020).

    CAS  PubMed  Google Scholar 

  186. Willett, W. et al. Food in the anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    PubMed  Google Scholar 

  187. Barabási, A.-L., Menichetti, G. & Loscalzo, J. The unmapped chemical complexity of our diet. Nat. Food 1, 33–37 (2020).

    Google Scholar 

  188. Taya, Y. et al. Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science 354, 1152–1155 (2016).

    CAS  PubMed  Google Scholar 

  189. Ertl, R. P., Chen, J., Astle, C. M., Duffy, T. M. & Harrison, D. E. Effects of dietary restriction on hematopoietic stem-cell aging are genetically regulated. Blood 111, 1709–1716 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Cerletti, M., Jang, Y. C., Finley, L. W., Haigis, M. C. & Wagers, A. J. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10, 515–519 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Garcia-Caballero, M. et al. Role and therapeutic potential of dietary ketone bodies in lymph vessel growth. Nat. Metab. 1, 666–675 (2019).

    CAS  PubMed  Google Scholar 

  192. Chang, P. V., Hao, L. M., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Rangan, P. et al. Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Rep. 26, 2704–2719.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Waterland, R. A. Assessing the effects of high methionine intake on DNA methylation. J. Nutr. 136, 1706s–1710s (2006).

    CAS  PubMed  Google Scholar 

  195. Mafra, D. et al. Methyl donor nutrients in chronic kidney disease: impact on the epigenetic landscape. J. Nutr. 149, 372–380 (2019).

    PubMed  Google Scholar 

  196. Halsted, C. H. et al. Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig. Proc. Natl Acad. Sci. USA 99, 10072–10077 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Di Francesco, A., Di Germanio, C., Bernier, M. & de Cabo, R. A time to fast. Science 362, 770–775 (2018).

    PubMed  PubMed Central  Google Scholar 

  198. Hahn, O. et al. Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol. 18, 56 (2017).

    PubMed  PubMed Central  Google Scholar 

  199. Wang, T. N. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 18, 57 (2017).

    PubMed  PubMed Central  Google Scholar 

  200. Newman, J. C. & Verdin, E. Ketone bodies as signaling metabolites. Trends Endocrinol. Metab. 25, 42–52 (2014).

    CAS  PubMed  Google Scholar 

  201. Puchalska, P. & Crawford, P. A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Rhoads, T. W. et al. Caloric restriction engages hepatic RNA processing mechanisms in rhesus monkeys. Cell Metab. 27, 677–688.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Sleiman, S. F. et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. eLife 5, e15092 (2016).

    PubMed  PubMed Central  Google Scholar 

  204. Sato, S. et al. Time of exercise specifies the impact on muscle metabolic pathways and systemic energy homeostasis. Cell Metab. 30, 92–110.e4 (2019).

    CAS  PubMed  Google Scholar 

  205. Guo, X. L. et al. Caloric restriction promotes cell survival in a mouse model of normal tension glaucoma. Sci. Rep. 6, 33950 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Benjamin, J. S. et al. A ketogenic diet rescues hippocampal memory defects in a mouse model of Kabuki syndrome. Proc. Natl Acad. Sci. USA 114, 125–130 (2017).

    CAS  PubMed  Google Scholar 

  207. Roberts, M. N. et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab. 26, 539–546.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Tognini, P. et al. Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet. Cell Metab. 26, 523–538.e5 (2017).

    CAS  PubMed  Google Scholar 

  209. Newman, J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 26, 547–557.e8 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Carrer, A. et al. Impact of a high-fat diet on tissue acyl-CoA and histone acetylation levels. J. Biol. Chem. 292, 3312–3322 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Guan, D. Y. et al. Diet-induced circadian enhancer remodeling synchronizes opposing hepatic lipid metabolic processes. Cell 174, 831–842.e12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).

    CAS  PubMed  Google Scholar 

  214. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  PubMed  Google Scholar 

  215. Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014).

    CAS  PubMed  Google Scholar 

  216. Blacher, E. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572, 474–480 (2019).

    CAS  PubMed  Google Scholar 

  217. den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

    Google Scholar 

  218. Krautkramer, K. A. et al. Diet–microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol. Cell 64, 982–992 (2016). This study links microbiota-derived short-chain fatty acids to histone acetylation dynamics in the host.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Romano, K. A. et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption. Cell Host Microbe 22, 279–290.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Schuckit, M. A. Alcohol-use disorders. Lancet 373, 492–501 (2009).

    PubMed  Google Scholar 

  221. Kriss, C. L. et al. In vivo metabolic tracing demonstrates the site-specific contribution of hepatic ethanol metabolism to histone acetylation. Alcohol. Clin. Exp. Res. 42, 1909–1923 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Narlikar, G. J., Sundaramoorthy, R. & Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490–503 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Bartholomew, B. Regulating the chromatin landscape: structural and mechanistic perspectives. Annu. Rev. Biochem. 83, 671–696 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Qi, Y. F. & Zhang, B. Predicting three-dimensional genome organization with chromatin states. PLoS Comput. Biol. 15, e1007024 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Buckle, A., Brackley, C. A., Boyle, S., Marenduzzo, D. & Gilbert, N. Polymer simulations of heteromorphic chromatin predict the 3D folding of complex genomic loci. Mol. Cell 72, 786–797.e11 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. MacPherson, Q., Beltran, B. & Spakowitz, A. J. Bottom-up modeling of chromatin segregation due to epigenetic modifications. Proc. Natl Acad. Sci. USA 115, 12739–12744 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Di Pierro, M., Cheng, R. R., Aiden, E. L., Wolynes, P. G. & Onuchic, J. N. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture. Proc. Natl Acad. Sci. USA 114, 12126–12131 (2017).

    PubMed  PubMed Central  Google Scholar 

  229. Xiao, Z. T., Dai, Z. W. & Locasale, J. W. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat. Commun. 10, 3763 (2019).

    PubMed  PubMed Central  Google Scholar 

  230. Zhou, F. et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572, 660–664 (2019).

    CAS  PubMed  Google Scholar 

  231. Bian, S. H. et al. Single-cell multiomics sequencing and analyses of human colorectal cancer. Science 362, 1060–1063 (2018).

    CAS  PubMed  Google Scholar 

  232. Cao, J. Y. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    PubMed  PubMed Central  Google Scholar 

  234. Korem, T. et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab. 25, 1243–1253.e5 (2017).

    CAS  PubMed  Google Scholar 

  235. Bashiardes, S., Godneva, A., Elinav, E. & Segal, E. Towards utilization of the human genome and microbiome for personalized nutrition. Curr. Opin. Biotech. 51, 57–63 (2018).

    CAS  PubMed  Google Scholar 

  236. Cornish-Bowden, A. Fundamentals of Enzyme Kinetics 4th ed. (Wiley-Blackwell, 2012).

  237. Lau, O. D. et al. p300/CBP-associated factor histone acetyltransferase processing of a peptide substrate. J. Biol. Chem. 275, 21953–21959 (2000).

    CAS  PubMed  Google Scholar 

  238. Tanner, K. G., Langer, M. R. & Denu, J. M. Kinetic mechanism of human histone acetyltransferase P/CAF. Biochemistry 39, 11961–11969 (2000).

    CAS  PubMed  Google Scholar 

  239. Tanner, K. G., Langer, M. R., Kim, Y. J. & Denu, J. M. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J. Biol. Chem. 275, 22048–22055 (2000).

    CAS  PubMed  Google Scholar 

  240. Thompson, P. R., Kurooka, H., Nakatani, Y. & Cole, P. A. Transcriptional coactivator protein p300 — kinetic characterization of its histone acetyltransferase activity. J. Biol. Chem. 276, 33721–33729 (2001).

    CAS  PubMed  Google Scholar 

  241. Wapenaar, H. et al. Enzyme kinetics and inhibition of histone acetyltransferase KAT8. Eur. J. Med. Chem. 105, 289–296 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Albaugh, B. N., Kolonko, E. M. & Denu, J. M. Kinetic mechanism of the Rtt109–Vps75 histone acetyltransferase-chaperone complex. Biochemistry 49, 6375–6385 (2010).

    CAS  PubMed  Google Scholar 

  243. Bintu, L. et al. Dynamics of epigenetic regulation at the single-cell level. Science 351, 720–724 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Katan-Khaykovich, Y. & Struhl, K. Dynamics of global histone acetylation and deacetylation in vivo: rapid restoration of normal histone acetylation status upon removal of activators and repressors. Genes Dev. 16, 743–752 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Evertts, A. G. et al. Quantitative dynamics of the link between cellular metabolism and histone acetylation. J. Biol. Chem. 288, 12142–12151 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Horiuchi, K. Y. et al. Assay development for histone methyltransferases. Assay Drug Dev. Technol. 11, 227–236 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Duncan, E. M., Chitsazan, A. D., Seidel, C. W. & Alvarado, A. S. Set1 and MLL1/2 target distinct sets of functionally different genomic loci in vivo. Cell Rep. 13, 2741–2755 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Kerimoglu, C. et al. KMT2A and KMT2B mediate memory function by affecting distinct genomic regions. Cell Rep. 20, 538–548 (2017).

    CAS  PubMed  Google Scholar 

  249. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    CAS  PubMed  Google Scholar 

  250. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  251. Becker, J. S., Nicetto, D. & Zaret, K. S. H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet. 32, 29–41 (2016).

    CAS  PubMed  Google Scholar 

  252. Musselman, C. A., Lalonde, M. E., Cote, J. & Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19, 1218–1227 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Verdin, E. & Ott, M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258–264 (2015).

    CAS  PubMed  Google Scholar 

  254. Lauberth, S. M. et al. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152, 1021–1036 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Yin, Y. et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356, eaaj2239 (2017).

    PubMed  PubMed Central  Google Scholar 

  256. Andrews, F. H. et al. The Taf14 YEATS domain is a reader of histone crotonylation. Nat. Chem. Biol. 12, 396–398 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Xiong, X. Z. et al. Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2. Nat. Chem. Biol. 12, 1111–1118 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Zhao, S., Yue, Y., Li, Y. Y. & Li, H. T. Identification and characterization of ‘readers’ for novel histone modifications. Curr. Opin. Chem. Biol. 51, 57–65 (2019).

    CAS  PubMed  Google Scholar 

  259. Jaffe, J. D. et al. Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat. Genet. 45, 1386–1391 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Ghandi, M. et al. Next-generation characterization of the cancer cell line encyclopedia. Nature 569, 503–508 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Li, H. X. et al. The landscape of cancer cell line metabolism. Nat. Med. 25, 850–860 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).

    CAS  PubMed  Google Scholar 

  263. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    PubMed  PubMed Central  Google Scholar 

  264. Ku, W. L. et al. Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification. Nat. Methods 16, 323–325 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    PubMed  PubMed Central  Google Scholar 

  266. Pareek, V., Tian, H., Winograd, N. & Benkovic, S. J. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science 368, 283–290 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Gilmore, I. S., Heiles, S. & Pieterse, C. L. Metabolic imaging at the single-cell scale: recent advances in mass spectrometry imaging. Annu. Rev. Anal. Chem. 12, 201–224 (2019).

    CAS  Google Scholar 

  268. Dai, Z. W. & Locasale, J. W. Understanding metabolism with flux analysis: from theory to application. Metab. Eng. 43, 94–102 (2017).

    CAS  PubMed  Google Scholar 

  269. Kopinski, P. K. et al. Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. Proc. Natl Acad. Sci. USA 116, 16028–16035 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Kungulovski, G. & Jeltsch, A. Epigenome editing: state of the art, concepts, and perspectives. Trends Genet. 32, 101–113 (2016).

    CAS  PubMed  Google Scholar 

  271. Stricker, S. H., Koferle, A. & Beck, S. From profiles to function in epigenomics. Nat. Rev. Genet. 18, 51–66 (2017).

    CAS  PubMed  Google Scholar 

  272. Park, M., Patel, N., Keung, A. J. & Khalil, A. S. Engineering epigenetic regulation using synthetic read-write modules. Cell 176, 227–238.e20 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.W.L. thanks the Marc Lustgarten Foundation and the National Institutes of Health (R01CA193256) for their generous support.

Author information

Authors and Affiliations

Authors

Contributions

Each of the authors contributed to all aspects of the article.

Corresponding author

Correspondence to Jason W. Locasale.

Ethics declarations

Competing interests

J.W.L. advises Restoration Foodworks, Nanocare Technologies and Raphael Pharmaceuticals. Z.D. and V.R. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Nucleosome

The basic structural unit of chromatin. Each nucleosome consists of two copies apiece of the histones H2A, H2B, H3 and H4.

Chromatin remodellers

Protein complexes that regulate gene expression by changing the organization of nucleosomes.

Electrophilic moieties

Molecules that have the tendency to accept an electron pair by reacting with electron-rich nucleophiles.

Km and Kd values

Quantities that describe the affinity of the substrate (Km) and an inhibitor (Kd) to an enzyme. Smaller values for Km and Kd indicate higher binding affinity.

Methyl group sinks

Molecular pathways that regulate intracellular methyl group availability by consuming S-adenosylmethionine (SAM).

Liquid–liquid phase separation

Demixing of fluid into two or more distinct phases, which can help compartmentalize molecules within a cell by forming membrane-less organelles.

Enhancers

Gene-regulatory elements that can be coding or non-coding sequences and that potentiate the transcription of genes proximal or distal to them.

Superenhancers

Large clusters of enhancers that are bound by multiple master transcription factors in order to activate the transcription of cell-identity-related genes.

Bromodomain

A protein domain that recognizes and binds to acetylated lysine residues.

One-carbon metabolism

A metabolic network for transferring one-carbon units from nutrients to metabolites that support multiple physiological processes, including nucleotide synthesis.

α-Ketoglutarate

(αKG). A metabolic intermediate of the tricarboxylic acid (TCA) cycle, which is derived from isocitrate and is further processed into succinyl-CoA. It can also be derived from glutamine metabolism.

Redox balance

Reaction systems that help maintain healthy levels of reactive oxygen species in intracellular compartments.

Metabolic fasting

An intentional abstinence from food and drink during a period of time.

Hexosamine biosynthetic pathway

A branch of glycolysis that utilizes substrates from amino acid, fatty acid and nucleotide metabolism to generate substrates that participate in N-linked and O-linked protein glycosylation.

Central-carbon metabolism

Metabolic pathways involved in the catabolism of carbohydrates, lipids and amino acids for the production of ATP and biomass precursors, as well as for signalling and redox status maintenance.

Rate constants

Quantities that relate the speed of a chemical reaction to the concentrations of its substrates.

Lipid peroxidation

A process by which lipids are endogenously rendered electrophilic by a degradative chemical reaction with free radicals.

Nucleophilic functional groups

Chemical groups that have the tendency of donating an electron pair in reactions with electron-poor groups.

Advanced glycation end products

(AGEs). Covalent adducts formed through the chemical crosslinking of glycolytic by-products to macromolecules such as DNA and protein.

Humoral immune response

A branch of the immune system that involves the activation and differentiation of B cells into plasma and memory cells, which mount antibody responses to invading pathogens.

Branched-chain amino acids

The amino acids leucine, isoleucine and valine, which each contain a branching aliphatic side chain.

MTHFD2

The enzyme methylenetetrahydrofolate dehydrogenase 2, which couples the folate cycle to the methionine cycle, enabling the transfer of the one-carbon methyl group to homocysteine in order to recycle methionine.

Warburg effect

The phenomenon, first observed by German physiologist Otto Heinrich Warburg, that cancer cells hyperactivate glycolysis, even in the presence of sufficient oxygen.

Ketogenic diet

A diet low in carbohydrate and high in fat, which precipitates the generation of ketone bodies by fatty acid catabolism.

Fetal alcohol spectrum disorder

In utero exposure to alcohol that can give rise to the postnatal acquisition of developmental disorders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Ramesh, V. & Locasale, J.W. The evolving metabolic landscape of chromatin biology and epigenetics. Nat Rev Genet 21, 737–753 (2020). https://doi.org/10.1038/s41576-020-0270-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-020-0270-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing