Skip to main content
Log in

Support theorem for an SPDE with multiplicative noise driven by a cylindrical Wiener process on the real line

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We prove a Stroock–Varadhan’s type support theorem for a stochastic partial differential equation on the real line with a noise term driven by a cylindrical Wiener process on \(L_2 ({\mathbb {R}})\). The main ingredients of the proof are V. Mackevičius’s approach to support theorem for diffusion processes and N.V. Krylov’s \(L_p\)-theory of SPDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bally, V., Millet, A., Sanz-Solé, M.: Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equations. Ann. Probab. 23(1), 178–222 (1995)

    Article  MathSciNet  Google Scholar 

  2. Cardon-Weber, C., Millet, A.: A support theorem for a generalized Burgers SPDE. Potential Anal. 15(4), 361–408 (2001)

    Article  MathSciNet  Google Scholar 

  3. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 152, 2nd edn. Cambridge University Press, Cambridge (2014)

  4. Gyöngy, I.: On the approximation of stochastic differential equations. Stochastics 23(3), 331–352 (1988)

    Article  MathSciNet  Google Scholar 

  5. Gyöngy, I.: The stability of stochastic partial differential equations. II. Stoch. Rep. 27(3), 189–233 (1989)

    Article  MathSciNet  Google Scholar 

  6. Hairer, M., Labbé, C.: Multiplicative stochastic heat equations on the whole space. J. Eur. Math. Soc. 20(4), 1005–1054 (2018)

    Article  MathSciNet  Google Scholar 

  7. Krylov, N.V.: An analytic approach to SPDEs. In: Carmona, R., Rozovskii, B. (eds.) Stochastic Partial Differential Equations: Six Perspectives. Mathematical Surveys and Monographs, vol. 64, pp. 185–242. American Mathematical Society, Providence, RI (1999)

    Chapter  Google Scholar 

  8. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Hölder Spaces. Graduate Studies in Mathematics, vol. 12. American Mathematical Society, Providence, RI (1996)

  9. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Graduate Studies in Mathematics, vol. 96. American Mathematical Society, Providence, RI (2008)

  10. Mackevičius, V.: \(S^P\)-Stability of solutions of symmetric stochastic differential equations. Liet. Matem. Rink. 25(4), 72–84 (1985) (in Russian; English translation in Lithuanian Math. J. 25, 4, 343–352 (1985))

  11. Mackevičius, V.: The support of the solution of a stochastic differential equation. Litovsk. Mat. Sb. 26(1), 91–98 (1986) (in Russian; English translation in Lith. Math. J., 26(1), 57–62 (1986))

  12. Millet, A., Sanz-Solé, M.: A Simple Proof of the Support Theorem for Diffusion Processes. Séminaire de Probabilités, XXVIII. Lecture Notes in Mathematics, vol. 1583, pp. 36–48. Springer, Berlin (1994)

  13. Nakayama, T.: Support theorem for mild solutions of SDE’s in Hilbert spaces. J. Math. Sci. Univ. Tokyo 11(3), 245–311 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Rozovskiy, B.L.: Stochastic Evolution Systems: Linear Theory and Applications to Nonlinear Filtering. Mathematics and its Applications, vol. 35. Kluwer Academic Publishers Group, Dordrecht (1990)

  15. Stroock, D.W., Varadhan, S.R.S.: On the support of diffusion processes with applications to the strong maximum principle. In: Proceedings of Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. 3, pp. 333–359. University of California Press (1972)

  16. Thangavelu, S.: Lectures on Hermite and Laguerre Expansions. Mathematical Notes, vol. 42. Princeton University Press, Princeton, NJ (1993)

  17. Twardowska, K.: On Support Theorems for Stochastic Nonlinear Partial Differential Equations, Stochastic Differential and Difference Equations. Progress in Systems and Control Theory, vol. 23. Birkhäuser, Boston, MA (1997)

  18. Walsh, J.: An Introduction to Stochastic Partial Differential Equations. École d’été de probabilités de Saint-Flour, XIV–1984. Lecture Notes in Mathematics, vol. 1180, pp. 265–439. Springer, Berlin (1986)

  19. Yastrzhembskiy, T.: Wong–Zakai approximation and support theorem for semilinear SPDEs with finite dimensional noise in the whole space. arXiv:1808.07584

Download references

Acknowledgements

This author would like to express his sincere gratitude to his advisor, N.V. Krylov, for reading a draft of this paper and offering valuable suggestions. This author would also like to thank the anonymous referee for comments that led to the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timur Yastrzhembskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The following lemma is taken from Appendix A of [19].

Lemma 6.1

Let \(p > 1\), \(T > 0\), \(h \in (0, 1 \wedge T)\), \(\varepsilon > 0\), \(\theta \in (0, 1/2)\), \(\theta ' \in (0, \theta )\) be numbers. Assume that (A4) (h) holds. Then, for any \(i, j \in {\mathbb {N}}\), the following assertions hold.

$$\begin{aligned}&(i)\, E || \delta w^i (\cdot , h) ||^p_{ C [0, T] } \le N (p, T, \varepsilon ) h^{ p/2 - \varepsilon }. \\&(ii)\, E ||\delta w^i (\cdot , h) ||^p_{ C^{1/2 - \theta } [0, T] } \le N (p, T, \theta , \theta ') h^{ \theta ' p}. \\&(iii)\, E || s^{i j} (\cdot , h) ||^p_{ C [0, T] } \le N (p, T, \varepsilon ) h^{p/2 - \varepsilon }. \\&(iv) \, E \int _0^T (|\delta w^i (t, h) |^p + |s^{i j} (t, h)|^p) \, dt \le N (p, T) h^{p/2},\\&\qquad E \int _0^T |D s^{i j} (t, h)|^p \, dt \le N (p, T). \\&(v) \, E || s^{i j} (\cdot , h) ||^p_{ C^{1/2 - \theta } [0, T]} \le N (p, T, \theta , \theta ') h^{ \theta ' p}. \end{aligned}$$

Proof

The proof of (i)–(iii), (v) and the proof of the second assertion of (iv) can be found in [19] (see Lemma 5.1). Here we show that the first estimate of (iv) holds. To do that, we only need to prove the following:

$$\begin{aligned} \sup _{t \le T} E (|\delta w^i (t, h)|^p + |s^{i j} (t, h)|^p) \le N (p, T) h^{p/2}. \end{aligned}$$

The above inequality for \(\delta w^i (\cdot , h)\) follows from the formulas (5.2) and (5.7) of [19].

Next, we prove the claim for \(s^{i j} (\cdot , h)\). First, consider the case \(i = j\). By Itô’s formula

$$\begin{aligned} s^{i i} (t, h) = \int _0^t \delta w^i (s, h) \, dw^i (s) - 1/2\, |\delta w^i (t, h)|^2, \end{aligned}$$

and, then, by Burkholder–Davis–Gundy inequality

$$\begin{aligned} \sup _{t \le T} E |s^{i i} (t, h)|^p \le N (p, T) \sup _{t \le T} E (|\delta w^i (t, h)|^p + |\delta w^i (t, h)|^{2p}) \le N (p, T) h^{p/2}. \end{aligned}$$

The proof in case \(i \ne j\) was actually given in [19] (see formulas (5.14)–(5.16)). \(\square \)

Lemma 6.2

Assume that \( (A4) (\gamma _n) \) holds for some sequence \( \{\gamma _n, n \in {\mathbb {N}}\} \) of positive numbers. Let \( \theta \in (0, 1), T > 0, p \ge 2 \) be numbers, and let \(\varDelta _n\) be any function of class \({{\varvec{\Delta }}_{\mathbf{n}}}\). Then, the following assertions hold.

(i):
$$\begin{aligned} J_n : = E \int _0^T ||\varDelta _n (t, \star ) ||^p_p \, dt \le N n^{N} \gamma _n^{p/2}, \end{aligned}$$

where \(N = N (p, T)\).

(ii):

For any \(\varepsilon > 0\), and any \(\delta \in (0, 1)\),

$$\begin{aligned} E \sup _{t \le T} || \varDelta _{n} (t, \star ) ||^p_{C^{2 - \delta }} \le N n^{N} \gamma _n^{p/2 - \varepsilon }, \end{aligned}$$

where \(N = N (p, T, \delta , \varepsilon )\).

(iii):

For any \( \varepsilon > 0\), and \(\varepsilon ' \in (0, \varepsilon )\),

$$\begin{aligned} E || \varDelta _n ||^p_{ C^{1/2 - \varepsilon } ([0, T], H^{\theta }_p ) } \le N n^{N} \gamma _n^{\varepsilon ' p}, \end{aligned}$$

where \(N = N (p, T, \varepsilon , \varepsilon ')\).

Proof

(i):

Due to Definition 3.1 we have

$$\begin{aligned} \begin{aligned} J_n&\le N n^{2p - 2} \sum _{i, j = 1}^{ n} \sum _{ k, l, m = 0}^2 (||{D^{k}} \phi _i||_p^p + || \phi _{i, j}^{l, m} ||_p^p) \\&\quad \times E \int _0^T (|s^{i j}_n (t)|^p + |\delta w^i_n (t)|^p) \, dt. \end{aligned} \end{aligned}$$
(6.1)

Next, it is well-known (see Lemma 1.5.2 of [16]) that, for any \(\rho \in [2, \infty ]\), and \(k \in {\mathbb {N}}\),

$$\begin{aligned} || \phi _k ||_{\rho } \le N (\rho ). \end{aligned}$$
(6.2)

In addition (see Sect. 1.1 of [16]),

$$\begin{aligned} D H_k (x) = 2k H_{k-1} (x). \end{aligned}$$

Then, by formula (2.5) and what was just said we have

$$\begin{aligned} || D^k \phi _j ||_{\rho } \le N (k, \rho ) j^{k/2}, \, \, k \in {\mathbb {N}}\cup \{0\}, j \in {\mathbb {N}}. \end{aligned}$$
(6.3)

Combining (6.1) and (6.3) with Lemma 6.1 (iv), we prove the assertion.

(ii):

The proof is similar the one above. First, note that by the interpolation inequality for Hölder spaces (see Theorem 3.2.1 in [8]), we may replace \(2 - \delta \) by 3. Second, by the product rule

$$\begin{aligned} || \phi ^{l, m}_{i, j} ||_{ C^3 } \le N ||\phi _i||^l_{C^3} ||\phi _j||^m_{C^3}. \end{aligned}$$
(6.4)

Third, by Lemma 6.1 (i), (iii), for any \(i, j \in {\mathbb {N}}\),

$$\begin{aligned} E ||q_{i j}||_{C[0, T]}^p \le N (p, T, \varepsilon ) \gamma _n^{p/2 - \varepsilon }, \end{aligned}$$
(6.5)

where \( q_{i j} \in \{ \delta w^i_n, s^{i j}_n \}. \) Now the assertion follows from (6.4), (6.3), and (6.5).

(iii):

First, by the properties of \(H^{\theta }_p\) spaces, for \( k, l, m \ge 0, \)

$$\begin{aligned} \begin{aligned} ||D^{k} \phi _i||_{\theta , p} + ||\phi _{i, j}^{ l, m}||_{\theta , p}&\le || \phi _i ||_{ k + 1, p } + || \phi _{i, j}^{ l, m} ||_{ 1, p}\\&\le N (p, k) ||\phi _i||_{W^{k+1}_p} + N (p) || \phi _{i, j}^{ l, m} ||_{ W^1_p }. \end{aligned} \end{aligned}$$
(6.6)

Clearly, we may assume that \(m \ne 0\). Note that by (6.3) the right hand side of (6.6) is less than

$$\begin{aligned}&N (p, k) i^{(k+1)/2} + N (p) || \phi _{i }||^l_{C^1} || \phi _j ||^{m-1}_{ C^1 } (|| \phi _j ||_p + ||D \phi _j||_p) \\&\quad \le N (p, k, l, m) (i^{(k+1)/2} + i^{l/2} j^{m/2}). \end{aligned}$$

This combined with Lemma 6.1 (ii) and (v) proves the claim.

\(\square \)

Lemma 6.3

Let \(\varepsilon \in (0, 1)\) be a number. Let \(\rho \in C^{\infty }_0\) be a function supported on (0, 1), and \(h \in {\mathbb {L}}_p (T)\). Denote

$$\begin{aligned} {\tilde{h}} (t, x) = \varepsilon ^{-2} \iint _{{\mathbb {R}}^2} h (t - s, x - y) I_{t - s > 0} \rho ( s/\varepsilon ) \rho ( y/\varepsilon ) \, ds dy. \end{aligned}$$

Then, the following assertions hold.

(i):

For any \(\gamma > 0\), \( {\tilde{h}} (t, \star ), t \ge 0 \) is a continuous \({\mathcal {F}}_t\)-adapted \(H^{\gamma }_p\)-valued process, and, hence, it is a predictable \(H^{\gamma }_p\)-valued process.

(ii):

Let \(T > 0\), \(\gamma \in (0, 2)\), \(\delta > 0\), \(k \in {\mathbb {N}}\cup \{0\}\) be numbers, and \(\tau \le T\) be a stopping time. Let \( \{\gamma _n, n \in {\mathbb {N}}\} \) be sequence of positive numbers, and \(\varDelta _n\) be any function of class \({\varvec{\Delta }}_{\mathbf{n}}\). Then, there exists a constant \( N ( p, T, \gamma , k, \delta ) > 0 \) such that

$$\begin{aligned} \begin{aligned} I: =&E \int _0^{\tau } || \varDelta _n (t, \star ) \partial ^k_t {\tilde{h}} (t, \star )||^p_{\gamma , p} \, dt \\ \le&N n^{N} \gamma ^{p/2 - \delta }_n \varepsilon ^{ -(\lceil \gamma \rceil + k) p} E \int _0^{\tau } || h (t, \star ) ||^p_{ p} \, dt. \end{aligned} \end{aligned}$$
(6.7)

Proof

(i):

Note that, for any \(m \in {\mathbb {N}}\cup \{0\}\),

$$\begin{aligned}&D_x^m \partial ^k_t {\tilde{h}} (t, x) \nonumber \\&\quad = \varepsilon ^{-2 - m - k} \int _0^{ t} \int _{ {\mathbb {R}}} h (t - s, x - y) (\partial _s^k \rho ) ( s/\varepsilon ) (D_x^m \rho ) ( y/\varepsilon ) I_{t> s > 0} \, ds dy.\nonumber \\ \end{aligned}$$
(6.8)

Then, by the properties of \(H^{\gamma }_p\) spaces (see Sect. 2), (6.8) and Minkowski inequality, and Hölder’s inequality, for any \(t \ge 0\),

$$\begin{aligned} \begin{aligned}&|| \partial ^k_t {\tilde{h}} (t, \star ) ||_{\gamma , p} \le || \partial ^k_t {\tilde{h}} (t, \star ) ||_{\lceil \gamma \rceil , p} \le N (\gamma , p) || \partial ^k_t {\tilde{h}} (t, \star ) ||_{ W^{\lceil \gamma \rceil }_p} \\&\quad \le N (\gamma , p, \rho ) \varepsilon ^{ -1 - \lceil \gamma \rceil - k} \int _0^{ t} || h (t - s, \star ) ||_p |(\partial _t^k \rho ) ( s/\varepsilon )| \, I_{t> s > 0} ds \\&\quad \le N (\gamma , p, k, \rho ) t^{(p-1)/p} \varepsilon ^{ - 1 - \lceil \gamma \rceil - k} \left( \int _0^{ t} || h (s, \star ) ||^p_p \, ds\right) ^{1/p}. \end{aligned} \end{aligned}$$
(6.9)

Hence, \(\partial ^k_t {\tilde{h}} (t, \star ), t \ge 0\) is an \(H^{\gamma }_p\)-valued function. By a similar argument combined with the dominated convergence theorem, it is also a continuous process taking values in the same space. Finally, by a standard approximation argument combined with (6.9) we conclude that \(\partial ^k_t {\tilde{h}} (t, \star ) \) is an \({\mathcal {F}}_t\)-adapted \(H^{\gamma }_p\)-valued process.

(ii):

First, note that by (i) the integral on the left-hand side of (6.7) is a well-defined random variable. Next, by Lemma 5.2 (i) of [7]

$$\begin{aligned} I \le E \int _0^{\tau } || \varDelta _n (t, \star ) ||^p_{ C^{\gamma + \eta } } ||\partial ^k_t {\tilde{h}} (t, \star )||^p_{\gamma , p} \, dt, \end{aligned}$$

where \(\eta \in (0, 2 - \gamma )\) is a number. Using Lemma 6.2 (ii),

$$\begin{aligned} I \le N n^N \gamma ^{p/2 - \delta }_n E \int _0^{\tau } ||\partial ^k_t {\tilde{h}} (t, \star )||^p_{\gamma , p} \, dt. \end{aligned}$$

To estimate the last integral we use the third inequality in (6.9). By a standard argument that uses Minkowski inequality we get

$$\begin{aligned} I \le N n^N \gamma ^{p/2 - \delta }_n \varepsilon ^{ -(\lceil \gamma \rceil + k) p} E \int _0^{\tau } || h (t, \star ) ||^p_p \, dt. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yastrzhembskiy, T. Support theorem for an SPDE with multiplicative noise driven by a cylindrical Wiener process on the real line. Stoch PDE: Anal Comp 8, 509–543 (2020). https://doi.org/10.1007/s40072-019-00152-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-019-00152-8

Keywords

Mathematics Subject Classification

Navigation