Skip to main content
Log in

The Effect of Single-Walled Carbon Nanotube (SWCNT) Concentration on the Mechanical and Rheological Behavior of Epoxy Matrix

  • Published:
Mechanics of Composite Materials Aims and scope

The improvement of Mode I fracture toughness of epoxy by the addition of single-walled carbon nanotubes (SWCNTs) is considered. To prepare nanocomposites, chemical-vapor-deposition-grown SWCNTs noncovalently functionalized with an ethoxylated alcohol was used as the additive and a diglycidyl ether of bisphenol-A-based epoxy as the matrix material. The SWCNTs were dispersed in the epoxy matrix via a mechanical stirrer and a 3-roll mill. The effect of their concentration (0.0125, 0.025, 0.05, 0.1, 0.3, and 0.5 wt.%) on the mechanical properties of the nanocomposites was investigated, and the optimum concentration was determined. Mode I fracture toughness (single-edge-notch 3-point bending) and tensile tests were carried out on neat epoxy and SWCNT-reinforced epoxy nanocomposites. The fractured surfaces of fracture toughness and tensile test specimens were examined by the SEM to reveal the effect of SWCNTs on their failure modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon, 33, No. 7, 883-891 (1995).

    Article  CAS  Google Scholar 

  2. P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, (1999).

  3. A. Paipetis and D. T. G. Katerelos, “Post-impact-fatigue behaviour of composite laminates: Current and novel technologies for enhanced damage tolerance,” Compos. Laminates Prop. Perform. Appl., 1-82 (2010).

  4. S. Chandrasekaran, N. Sato, F. Tölle, R. Mülhaupt, B. Fiedler, and K. Schulte, “Fracture toughness and failure mechanism of graphene based epoxy composites,” Compos. Sci. Technol., 97, 90-99 (2014).

    Article  CAS  Google Scholar 

  5. N. Domun, H. Hadavinia, T. Zhang, T. Sainsbury, G. H. Liaghata, and S. Vahid, “Improving the fracture toughness and the strength of epoxy using nanomaterials — a review of the current status,” Nanoscale, 7, No. 23, 10294-10329 (2015).

    Article  CAS  Google Scholar 

  6. P. Ma, N. A. Siddiqui, G. Marom, and J. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites : A review,” Compos. Part A, 41, No. 10, 1345-1367 (2010).

    Article  Google Scholar 

  7. N. R. Paluvai, S. Mohanty, and S. K. Nayak, “Synthesis and modifications of epoxy resins and their composites: A Review,” Polym. - Plast. Technol. Eng., 53, No. 16, 1723-1758 (2014).

    Article  CAS  Google Scholar 

  8. G. Mittal, V. Dhand, K. Y. Rhee, S. J. Park, and W. R. Lee, “A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites,” J. Ind. Eng. Chem., 21, 11-25 (2015).

    Article  CAS  Google Scholar 

  9. D. R. Bortz, E. G. Heras, and I. Martin-Gullon, “Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites,” Macromolecules., 45, 238-245 (2011).

    Article  Google Scholar 

  10. J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon N. Y., 47, 922-925 (2009).

    Article  CAS  Google Scholar 

  11. K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, 306, 666-669 (2004).

    Article  CAS  Google Scholar 

  12. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, and Y. Wu, “Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon N. Y., 45,1558-1565 (2007).

    Article  CAS  Google Scholar 

  13. F. C. Shen, “A filament-wound structure technology overview,” Mater. Chem. Phys., 42, 96-100 (1995).

    Article  CAS  Google Scholar 

  14. L. Tang, Y. Wan, D. Yan, Y. Pei, L. Zhao, and Y. Li,” The effect of graphene dispersion on the mechanical properties of graphene / epoxy composites,” Carbon N. Y., 60, 16-27 (2013).

  15. Y. Li, Z. Yang, J. Liu, C. Lin, J. Zhang, and X. Zheng, “Enhancing fracture toughness of polymer-based functional energetic composites by filling nano-graphene in matrix, “Polym. Compos., 40, E1151-E1161 (2019).

    Article  CAS  Google Scholar 

  16. S. Chakraborty, A. K. Chakraborty, M. Barbezat, and G. P. Terrasi, “Interfacial interaction and the fracture toughness ( KIC ) trends in epoxy nanocomposites filled with functionalized graphene-based fillers,” Polym. Compos., 39, E2356-E2369 (2018).

    Article  CAS  Google Scholar 

  17. R. S. Ruoff, D. Qian, and W. K. Liu, “Mechanical properties of carbon nanotubes: Theoretical predictions and experimental measurements,” Comptes Rendus Phys., 4, No. 9, 993-1008 (2003).

    Article  CAS  Google Scholar 

  18. B. Fiedler, F. H. Gojny, M. H. G. Wichmann, M. C. M. Nolte, and K. Schulte, “Fundamental aspects of nano-reinforced composites,” Compos. Sci. Technol., 66, No. 16, 3115-3125 (2006).

    Article  CAS  Google Scholar 

  19. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites — A comparative study,” Compos. Sci. Technol., 65, No. 15-16 SPEC. ISS., 2300-2313 (2005).

  20. M. Shtein, R. Nadiv, N. Lachman, H. D. Wagner, and O. Regev, “Fracture behavior of nanotube-polymer composites: Insights on surface roughness and failure mechanism,” Compos. Sci. Technol., 87, 157-163 (2013).

    Article  CAS  Google Scholar 

  21. B. Ribeiro, E. C. Botelho, M. L. Costa, and C. F. Bandeira, “Carbon nanotube buckypaper reinforced polymer composites: A review,” Polímeros, 27, No. 3, 247-255 (2017).

    Article  Google Scholar 

  22. N. Kadhim, Y. Mei, Y. Wang, Y. Li, F. Meng, M. Jiang, and Z. Zhou, “Remarkable improvement in the mechanical properties of epoxy composites achieved by a small amount of modified helical carbon nanotubes,” Polymers, 10, No. 10, 1103 (2018).

  23. J. Cha, G. H. Jun, J. K. Park, J. C. Kim, H. J. Ryu, and S. H. Hong, “Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes,” Compos. Part B Eng., 129, 169-179 (2017).

    Article  CAS  Google Scholar 

  24. A. S. Paipetis and V. Kostopoulos, Carbon Nanotube Enhanced Aerospace Composite Materials: A New Generation of Multifunctional Hybrid Structural Composites, Springer Science & Business Media (2013).

  25. X. Nan, J. Ma, J. Liu, J. Zhao, and W. Zhu, “Effect of surfactant functionalization of multi-walled carbon nanotubes on mechanical, electrical and thermal properties of epoxy nanocomposites,” Fibers Polym., 17, No. 11, 1866-1874 (2016).

    Article  CAS  Google Scholar 

  26. Y. Geng, M. Y. Liu, J. Li, X. Mei Shi, and J. K. Kimet, “Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites,” Compos. Part A, Appl. Sci. Manuf., 39, No. 12, 1876-1883 (2008).

    Article  Google Scholar 

  27. S. Ghorabi, S. Ghorabi, L. Rajabi, S. S. Madaeni, S. Zinadini, and A. A. Derakhshan, “Effects of three surfactant types of anionic, cationic and non-ionic on tensile properties and fracture surface morphology of epoxy/MWCNT nanocomposites,” Iran. Polym. J., 21, No. 2, 121-130 (2012).

    Article  CAS  Google Scholar 

  28. Y. An, X. He, W. Yang, and Y. Ding, “Effect of surfactants on the dispersion of multi-walled carbon nanotubes in epoxy resin,” Adv. Mater. Res., 221, 1-7 (2011).

    Article  CAS  Google Scholar 

  29. E. T. Thostenson and T. W. Chou, “Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites,” Carbon, 44, No. 14, 3022-3029 (2006).

    Article  CAS  Google Scholar 

  30. K. L. Lu, R. M. Lago, Y. K. Chen, M. L. H. Green, P. J. F. Harris, and S. C. Tsang, “Mechanical damage of carbon nanotubes by ultrasound,” Carbon, 34, No.6, 814-16 (1996).

  31. Y. Zhou, M. I. Jeelani, and S. Jeelani, “Development of photo micro-graph method to characterize dispersion of CNT in epoxy,” Mater. Sci. Eng. A, 506, No. 1-2, 39-44 (2009).

    Article  Google Scholar 

  32. M. Nofar, S. V. Hoa, and M. D. Pugh, “Failure detection and monitoring in polymer matrix composites subjected to static and dynamic loads using carbon nanotube networks,” Compos. Sci. Technol., 69, No. 10, 1599-1606 (2009).

    Article  CAS  Google Scholar 

  33. S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon, “Chemistry of singlewalled carbon nanotubes,” Acc. Chem. Res., 35, No. 12, 1105-1113 (2002).

    Article  CAS  Google Scholar 

  34. P. Mukhopadhyay and R. K. Gupta, Graphite, Graphene, and Their Polymer Nanocomposites, CRC Press (2012).

  35. S. Y. Fu and Y. W. Mai, “Thermal conductivity of misaligned short-fiber-reinforced polymer composites,” J. Appl. Polym. Sci., 88, No. 6, 1497-1505 (2003).

    Article  CAS  Google Scholar 

  36. A. Jiménez-Suárez, M. Campo, I. Gaztelumendi, N. Markaide, M. Sánchez, and A. Ureñ, “The influence of mechanical dispersion of MWCNT in epoxy matrix by calendering method: Batch method versus time controlled,” Compos. Part B Eng., 48, 88-94 (2013).

    Article  Google Scholar 

  37. ASTM, D. 5045-99, Standard Test Method for Tensile Properties of Plastics (2014).

  38. ASTM, D. 638-14, Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release (1999).

  39. A. Hernández-Pérez, F. Avilés, A. May-Pat, A. Valadez-González, P.J. Herrera-Franco, and P. Bartolo-Pérez, “Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes,” Compos. Sci. Technol., 68, No. 6, 1422-1431 (2008).

    Article  Google Scholar 

  40. T. W. Clyne and D. Hull, An Introduction to Composite Materials, Cambridge University Press (1996).

  41. M. H. G. Wichmann, J. Sumfleth, B. Fiedler, F. H. Gojny, and K. Schulte, “Multiwall carbon nanotube/epoxy composites produced by a masterbatch process,” Mech. Compos. Mater., 42, No.5, 395-406 (2006).

Download references

Acknowledgement

This study was supported by the Scientific Research Projects of Izmir Institute of Technology with Project No. 2017IYTE46 and TÜBİTAK with the authors acknowledge the support of this institutions (project 215M182). The tuball SWCNTs from OCSiAl used in this study were supplied from PİNHAS A.Ş.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tanoğlu.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 56, No. 4, pp. 767-780, May-June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ay, Z., Tanoğlu, M. The Effect of Single-Walled Carbon Nanotube (SWCNT) Concentration on the Mechanical and Rheological Behavior of Epoxy Matrix. Mech Compos Mater 56, 523–532 (2020). https://doi.org/10.1007/s11029-020-09900-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09900-7

Keywords

Navigation