Skip to main content
Log in

Block bootstrapping for a panel mean break test

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

We consider block bootstrappings for panel mean change test of the squared CUSUM test of Horváth and Hušková (J Time Ser Anal 33:631–648, 2012): the circular block bootstrapping and stationary bootstrapping. First order asymptotic null validity of the test is proved under serial and/or cross-sectional correlation. Consistency of the test under an alternative hypothesis is also proved. A Monte-Carlo experiment reveals that the existing tests of Horváth and Hušková (2012) and others have severe size distortions for serially and/or cross-sectionally correlated panels, and the block bootstrappings remedy this size distortion problem. A real data analysis illustrates the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, H. Z., & Chen, Z. G. (1982). Autocorrelation, autoregression and autoregressive approximation. The Annals of Statistics, 10, 926–936.

    Article  MathSciNet  Google Scholar 

  • Andrews, D. W. K. (1991). Heteroscedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59, 817–854.

    Article  MathSciNet  Google Scholar 

  • Bai, J. (2010). Common breaks in means and variances for panel data. Journal of Econometrics, 157, 78–92.

    Article  MathSciNet  Google Scholar 

  • Bai, J., Lumsdaine, R. L., & Stock, J. H. (1998). Testing for and dating breaks in multivariate time series. Review of Econometric Studies, 65, 395–432.

    Article  MathSciNet  Google Scholar 

  • Bai, J., & Ng, S. (2004). A PANIC attack on unit roots and cointegration. Econometrica, 72, 1127–1177.

    Article  MathSciNet  Google Scholar 

  • Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66, 47–78.

    Article  MathSciNet  Google Scholar 

  • Billingsley, P. (1999). Convergence of probability measures (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Davidson, J. (2002). Establishing conditions for the functional central limit theorem in nonlinear and semiparametric time series processes. Journal of Econometrics, 106, 243–269.

    Article  MathSciNet  Google Scholar 

  • Demetrescu, M., & Hanck, C. (2013). Nonlinear IV panel unit root testing under structural breaks in the error variance. Statistical Papers, 54, 1043–1066.

    Article  MathSciNet  Google Scholar 

  • Donsker, M. D. (1951). An invariance principle for certain probability limit theorems. Memoirs of the American Mathematical Society, 6, 1–12.

    MathSciNet  MATH  Google Scholar 

  • Focarelli, D. (2005). Bootstrap bias-correction procedure in estimating long-run relationships from dynamic panels, with an application to money demand in the euro area. Economic Modelling, 22, 305–325.

    Article  Google Scholar 

  • Geweke, J., & Jiang, Y. (2011). Inference and prediction in a multiple-structural-break model. Journal of Econometrics, 163, 172–185.

    Article  MathSciNet  Google Scholar 

  • Gonçalves, S. (2011). The moving blocks bootstrap for panel linear regression models with individual fixed effects. Econometric Theory, 27, 1048–1082.

    Article  MathSciNet  Google Scholar 

  • Hall, P., & Heyde, C. C. (1980). Martingale limit theory and its application. New York: Ascademic Press.

    MATH  Google Scholar 

  • Hansen, B. E. (2000). Testing for structural change in conditional models. Journal of Econometrics, 97, 93–115.

    Article  MathSciNet  Google Scholar 

  • Herrndorf, N. (1984). A functional central limit theorem for weakly dependent sequences of random variables. The Annals of Probability, 12, 141–153.

    Article  MathSciNet  Google Scholar 

  • Horváth, L., & Hušková, M. (2012). Change-point detection in panel data. Journal of Time Series Analysis, 33, 631–648.

    Article  MathSciNet  Google Scholar 

  • Horváth, L., Hušková, M., Rice, G., & Wang, J. (2017). Asymptotic properties of the CUSUM estimator for the time of change in linear panel data models. Econometric Theory, 33, 366–412.

    Article  MathSciNet  Google Scholar 

  • Hwang, E. J., & Shin, D. W. (2015). Stationary bootstrapping for semiparametric panel unit root tests. Computational Statistics and Data Analysis, 83, 14–25.

    Article  MathSciNet  Google Scholar 

  • Hwang, E. J., & Shin, D. W. (2017). Stationary bootstrapping for common mean change detection in cross-sectionally dependent panels. Metrika, 80, 767–787.

    Article  MathSciNet  Google Scholar 

  • Jentsch, C., Politis, D. N., & Paparoditis, E. (2014). Block bootstrap theory for multivariate integrated and cointegrated processes. Journal of Time Series Analysis, 36, 416–441.

    Article  MathSciNet  Google Scholar 

  • Jouini, J. (2010). Bootstrap methods for single structural change tests: Power versus corrected size and empirical illustration. Statistical Papers, 51, 85–109.

    Article  MathSciNet  Google Scholar 

  • Kim, D. (2011). Estimating a common deterministic time trend break in large panels with cross sectional dependence. Journal of Econometrics, 164, 310–330.

    Article  MathSciNet  Google Scholar 

  • Kim, D. (2014). Common breaks in time trends for large panel data with a factor structure. Econometrics Journal, 17, 301–337.

    Article  MathSciNet  Google Scholar 

  • Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. The Annals of Statistics, 17, 1217–1241.

    Article  MathSciNet  Google Scholar 

  • Lahiri, S. N. (2003). Resampling methods for dependent data. New York: Springer.

    Book  Google Scholar 

  • Li, D., Qian, J., & Su, L. (2016). Panel data models with interactive fixed effects and multiple structural breaks. Journal of the American Statistical Association, 111, 1804–1819.

    Article  MathSciNet  Google Scholar 

  • Palm, F. C., Smeekes, S., & Urbain, J. P. (2011). Cross-sectional dependence robust block bootstrap panel unit root test. Journal of Econometrics, 163, 85–104.

    Article  MathSciNet  Google Scholar 

  • Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels, Cambridge Working Papers in Economics (Vol. 435). Cambridge: University of Cambridge.

    Google Scholar 

  • Phillips, P. C. B., & Solo, V. (1992). Asymptotics for linear processes. The Annals of Statistics, 20, 971–1001.

    Article  MathSciNet  Google Scholar 

  • Politis, D. N., & Romano, P. J. (1992). A circular block-resampling procedure for stationary data. Exploring the limits of bootstrap (pp. 263–270). New York: Wiley.

    MATH  Google Scholar 

  • Politis, D. N., & Romano, P. J. (1994). The stationary bootstrap. Journal of the American Statistical Association, 89, 1303–1313.

    Article  MathSciNet  Google Scholar 

  • Politis, D. N., & White, H. (2004). Automatic block-length selection for the dependent bootstrap. Econometric Reviews, 23, 53–70.

    Article  MathSciNet  Google Scholar 

  • Qu, Z., & Perron, P. (2007). Estimating and testing structural changes in multivariate regressions. Econometrica, 75, 459–502.

    Article  MathSciNet  Google Scholar 

  • Sharipov, O., Tewes, J., & Wendler, M. (2016). Sequential block bootstrap in a Hilbert space with application to change point analysis. The Canadian Journal of Statistics, 44, 300–322.

    Article  MathSciNet  Google Scholar 

  • Shin, D. W., & Hwang, E. J. (2017). A CUSUM test for panel mean change detection. Journal of the Korean Statistical Society, 46, 70–77.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very thankful of the constructive comments of the two anonymous referees. This study was supported by a grant from the National Research Foundation of Korea (2019R1A2C1004679) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1A6A1A11051177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wan Shin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proofs

Proofs

Proof of Theorem 1

Under \(H_0\), we have, \(Z_{i,T}(z) = \frac{1}{{\hat{\sigma }}_i\sqrt{T}} \sum _{t=1}^{[Tz]} (X_{i,t} - {\bar{X}}_i) = \frac{1}{{\hat{\sigma }}_i \sqrt{T}} (\sum _{t=1}^{[Tz]}e_{i,t} - \frac{[Tz]}{T}\sum _{t=1}^Te_{i,t}),\) and the result holds by (C1)–(C2) and the continuous mapping theorem. \(\square \)

Lemma A.1

Under (C1), (C2) and (B1), (B2), both for \(Z^{*}_T=Z_T^{*CB}\) and \(Z_T^*=Z_T^{*SB}\), under \(H_0\), as \(T\rightarrow \infty \), \(Z_T^{*}(\cdot ) {\mathop {\longrightarrow }\limits ^\mathrm{d^*}} {\hat{\Sigma }}^{-1/2} B^e(\cdot ),\) where \(Z_T^{*}(z) = [Z_{1,T}^{*}(z), \ldots , Z_{N,T}^{*}(z)]'\), \(Z_{i,T}^{*}(z) = \frac{1}{\sqrt{T}} \sum _{t=1}^{[Tz]} \frac{(X_{i,t}^* - {\bar{X}}_i)}{{\hat{\sigma }}_i^*}\).

Proof

We first consider \(Z_T^*=Z_T^{*CB}\). Let \(X_t^*\) be the circular block bootstrap sample \(X_t^{*CB},~t=1,\ldots ,T\). Let \(L=L_{CB}\). Let \({\hat{u}}_t = {\hat{\Sigma }}^{-1/2}(X_t - {\bar{X}})\) and let \({\hat{u}}_t^* ={\hat{\Sigma }}^{-1/2}(X_t^*-{\bar{X}})\). Define the sum in the j-th block \({\hat{U}}_{I_j,L} = \sum _{s=0}^{L-1} {\hat{u}}_{I_j+s}\). Let

$$\begin{aligned} S_T^{*}(z) =\frac{1}{\sqrt{T}} \sum _{t=1}^{[Tz]} {\hat{u}}_{t}^*,~~ {\hat{W}}_T^*(z) = \frac{1}{\sqrt{T}} \sum _{j=1}^{m_{[Tz]}-1} {\hat{U}}_{I_j,L},~~ R_T^*(z) = \frac{1}{\sqrt{T}} \sum _{t=L(m_{[Tz]}-1)}^{[Tz]-L(m_{[Tz]}-1)} {\hat{u}}_t. \end{aligned}$$

Then \(S_T^*(z) = {\hat{W}}_T^*(z) + R_T^*(z),~ 0<z<1\).

Note that \({\hat{W}}_T^*(z) \) is partial sum process of a triangular array

$$\begin{aligned} {\hat{U}}_{I_1,L},\ldots , {\hat{U}}_{I_{m_{[Tz]}},L}, \text { which are conditionally i.i.d. with}~E^*({\hat{U}}_{I_j,L})=0 \end{aligned}$$
(4)

and, by (14) of Politis and Romano (1994) and \(L^{-1} + \frac{L}{T} = o(1)\) of (B1),

$$\begin{aligned} L^{-1} Var^*({\hat{U}}_{I_j,L}) = {L}^{-1}{T}^{-1} \sum _{t=1}^T({\hat{U}}_{t,L}{\hat{U}}_{t,L}') = {\hat{\Omega }}^u {\mathop {\longrightarrow }\limits ^\mathrm{p}} \Omega ^u, \end{aligned}$$
(5)

where \({\hat{\Omega }}^u = {\hat{\gamma }}^u(0) +\sum _{h=-L}^L ( 1- \frac{|h|}{L}) {\hat{\gamma }}^u(h)\), \({\hat{\gamma }}^u(h) = T^{-1}\sum _{t=h+1}^T ( {\hat{u}}_t - {\bar{u}}) ({\hat{u}}_{t-h} - {\bar{u}})', \)\({\hat{\gamma }}^u(-h) = {\hat{\gamma }}^u(h)'\), \(h \ge 0\), \({\bar{u}} = \frac{1}{T} \sum _{t=1}^T {\hat{u}}_t\). Let \({\hat{\Sigma }}^*=diag( {\hat{\sigma }}_1^{*2},\ldots , {\hat{\sigma }}_N^{*2})\). We will show

$$\begin{aligned} \sup _z ||R_T^{*}(z)|| {\mathop {\longrightarrow }\limits ^\mathrm{p^*}} 0,~~ {\hat{W}}^*_T(z) {\mathop {\longrightarrow }\limits ^\mathrm{d^*}} {\hat{\Sigma }}^{-1/2} B^e(\cdot ),~~{\hat{\Sigma }}^*-{\hat{\Sigma }} {\mathop {\longrightarrow }\limits ^\mathrm{p}} 0. \end{aligned}$$

Then, we have \(\sup _z||Z_T^*(z)-S_T^*(z)||=o_p(1),\) and hence have the result.

We first show \(\sup _z ||R_T^{*}(z)|| {\mathop {\longrightarrow }\limits ^\mathrm{p^*}} 0\). For given \(\varepsilon >0\), applying the Markov inequality, we have the first result because, by (B1),

$$\begin{aligned} \begin{aligned} P^*[\sup _z||R_T^{*}(z)||>\varepsilon ]&= P^*\left[ \sup _z \frac{1}{\sqrt{T}} ||\sum _{s=[Tz] -L(m_{[Tz]}-1)}^{L-1} {\hat{u}}_{ I_{m_{[Tz]}}+s} ||>\varepsilon \right] \\&\le ~P^*\left[ \frac{L}{\sqrt{T}} \max _t ||{\hat{u}}_{t}||>\varepsilon \right] \le \frac{L}{\sqrt{T}\varepsilon } E^*[\max _t ||{\hat{u}}_{t}||] \\&= \frac{L}{\sqrt{T}\varepsilon }\max _t||{\hat{\Sigma }}^{-1/2}(e_t-{\bar{e}}_T)|| =o_p(1),~~{\bar{e}}_T=\frac{1}{T}\sum _{t=1}^Te_t. \end{aligned} \end{aligned}$$

We second show \({\hat{W}}_T^*(z) {\mathop {\longrightarrow }\limits ^\mathrm{d^*}} {\hat{\Sigma }}^{-1/2} B^e(\cdot )\). This invariance principle for \({\hat{W}}_T^*(z)\) is obtained by applying Theorem 13.5 on p. 142 of Billingsley (1999) for which it suffices to show (6) and (7) below: for any integer \(k>0\), \( 0 \le z_1< z_2< \cdots <z_k \le 1\),

$$\begin{aligned} \begin{aligned} {[{\hat{W}}_T^*(z_1), \ldots , {\hat{W}}_T^*(z_k)]}^{'} {\mathop {\longrightarrow }\limits ^\mathrm{d^*}} N_k(0, \Omega ^z),~\text { in probability}, \end{aligned} \end{aligned}$$
(6)

where \(\Omega ^z = diag(z_1, \ldots , z_k)\otimes {\tilde{\Omega }}^u,\)\({\tilde{\Omega }}^u={\hat{\Sigma }}^{-1/2}\Omega ^e{\hat{\Sigma }}^{-1/2}\) and \(\otimes \) is the Kronecker product; and for \(0 \le z<r<s\le 1\), for some \(0<C< \infty \) not depending on Tzrs, conditionally on the data \(X_{1}, \ldots , X_{T}\),

$$\begin{aligned} \begin{aligned} E^*[||{\hat{W}}_T^*(r)-{\hat{W}}_T^*(z)||^2||{\hat{W}}_T^*(s)-{\hat{W}}_T^*(r)||^2] \le C(s-z)^2. \end{aligned} \end{aligned}$$
(7)

The first one (6) is shown for \(k=2\) because it straightforwardly extends to k-variate cases:

$$\begin{aligned} \begin{aligned} {[{\hat{W}}_T^*(z_1), {\hat{W}}_T^*(z_2)-{\hat{W}}_T^*(z_1)] }^{'} {\mathop {\longrightarrow }\limits ^\mathrm{d^*}} N\left( 0,\left( {\begin{matrix} z_1 &{}\quad 0 \\ 0&{}\quad z_2-z_1\end{matrix}}\right) \otimes {\tilde{\Omega }}^u\right) , \end{aligned} \end{aligned}$$
(8)

Recall that, given T, \({\hat{U}}_{I_j,L}, j=1,2,\ldots \) are iid having \(E^*[{\hat{U}}_{I_j,L}]=0\) and \(Var^*[{\hat{U}}_{I_j,L}]=Var^*[{\hat{U}}_{I_1,L}] = L{\hat{\Omega }}^u\). Therefore, for \({\hat{W}}_T^*(z_1) = \frac{1}{\sqrt{T}} \sum _{j=1}^{m_{[Tz_1]}} {\hat{U}}_{I_{j}, L}\), we have \(E^*[{\hat{W}}_T^*(z_1)]=0\) and \(Var^*[{\hat{W}}_T^*(z_1)] = \frac{m_{[Tz_1]}}{T} L{\hat{\Omega }}^u = {\tilde{\Omega }}^uz_1 + o_p(1)\) and similarly, \(E^*[{\hat{W}}_T^*(z_2) - {\hat{W}}_T^*(z_1)] = 0\) and \(Var^*[{\hat{W}}_T^*(z_2) - {\hat{W}}_T^*(z_1)] = {\tilde{\Omega }}^u (z_2-z_1) + o_p(1)\), \(Cov^*[{\hat{W}}_T^*(z_1), {\hat{W}}_T^*(z_2) - {\hat{W}}_T^*(z_1)] = o_p(1).\) We first establish asymptotic normality for \({\hat{W}}_T^*(z_1)\). Note that \(\frac{\sqrt{T}}{\sqrt{Lm}}{\hat{W}}_T^*(z_1) = \frac{1}{\sqrt{Lm}} \sum _{j=1}^m {\hat{U}}_{I_j,L} = \sum _{j=1}^m U_j^*\sqrt{\frac{L}{m}},\)\(m = m_{[Tz_1]},\) is a sum of conditionally iid triangular array elements \(U_j^*\sqrt{L/m}\), where \(U_j^* = {\hat{U}}_{I_j,L}/L,~ j=1,\ldots ,m\). By the same argument in the proof of Theorem 3.2 of Lahiri (2003) for asymptotic normality of circular block average, the Linderberg’s condition, as \(T \rightarrow \infty \),

$$\begin{aligned} \Delta _T(a) = \frac{L}{m} \sum _{j=1}^m E^*[||U_j^*||^2] I(\sqrt{L}||U_j^*||>2a) {\mathop {\longrightarrow }\limits ^\mathrm{p}} 0 \end{aligned}$$
(9)

is verified for \(a = (T/L)^{1/4}\). Applying the same subsequence argument in the proof of Lahiri (2003, p. 57) with (9) and \(Var^*[{\hat{W}}_T^*(z_1)] = z_1 {\tilde{\Omega }}^u + o_p(1)\), we get \({\hat{W}}_T^*(z_1) {\mathop {\longrightarrow }\limits ^\mathrm{d^*}} N(0, z_1{\tilde{\Omega }}^u)\). Now, we apply the above argument for asymptotic normality of \({\hat{W}}_T^*(z_1)\) to show \(\lambda _1 {\hat{W}}_T^*(z_1) + \lambda _2({\hat{W}}_T^*(z_2)-{\hat{W}}_T^*(z_1)) = \lambda _1 \sum _{j=1}^{m_{[Tz_1]}} {\hat{U}}_{I_j,L} + \lambda _2 \sum _{j=m_{[Tz_1]}+1}^{m_{[Tz_2]}} {\hat{U}}_{I_j,L} {\mathop {\longrightarrow }\limits ^\mathrm{d^*}} N(0, \lambda _1^2 {\tilde{\Omega }}^u z_1 + \lambda _2^2{\tilde{\Omega }}^u(z_2-z_1))\). Then, by the Cramer–Wold device, we get (8) and hence (6). We have (7) because, conditionally on \(X_1,\ldots ,X_T\),

$$\begin{aligned} \begin{aligned}&E^* [||{\hat{W}}_T^*(r) - {\hat{W}}_T^*(z)||^2||{\hat{W}}_T^*(s)-{\hat{W}}_T^*(r)||^2] \\&\quad =E^* [||{\hat{W}}_T^*(r) - {\hat{W}}_T^*(z)||^2]E^*[||{\hat{W}}_T^*(s)-{\hat{W}}_T^*(r)||^2] \\&\quad = \frac{1}{T^2} E^*\left[ \sum _{j=m_{[Tz]}+1}^{m_{[Tr]}} {\hat{U}}_{I_j,L}' {\hat{U}}_{I_j,L}\right] E^*\left[ \sum _{j=m_{[Tr]}+1}^{m_{[Ts]}} {\hat{U}}_{I_j,L}' {\hat{U}}_{I_j,L}\right] \\&\quad = (r-z)(s-r) \left\{ \frac{E^*\left[ {\hat{U}}_{I_1,L}'{\hat{U}}_{I_1,L}\right] }{L}\right\} ^2 \le C (s-z)^2, \end{aligned} \end{aligned}$$

by \(L^{-1}E^*[{\hat{U}}_{I_1,L}'{\hat{U}}_{I_1,L}] = tr(L^{-1} E^*[{\hat{U}}_{I_1,L}{\hat{U}}_{I_1,L}'])=tr({\tilde{\Omega }}^u)\) of (5).

We next consider \(Z_T^*=Z_T^{*SB}\). The proof is similar to the above proof under (C1), (C2) and (B1) because modifications of (4)–(5) for stationary bootstrapping also hold as

$$\begin{aligned} {\hat{U}}_{I_j,L_j},~j=1,2,\ldots , \text { which are conditionally i.i.d. with}~E^*({\hat{U}}_{I_j,L_j})=0, \nonumber \\\end{aligned}$$
(10)
$$\begin{aligned} p_{SB} Var^*({\hat{U}}_{I,L}) = {\tilde{\Omega }}^u +o_p(1) {\mathop {\longrightarrow }\limits ^\mathrm{p}} \Omega ^u, \text { by Remark 3 of Politis and Romano (1994)}.\nonumber \\ \end{aligned}$$
(11)

We finally show \({\hat{\Sigma }}^*-{\hat{\Sigma }} \rightarrow 0\). It suffices to show \({\hat{\sigma }}_i^{2*} {\mathop {\longrightarrow }\limits ^\mathrm{p}} {\hat{\sigma }}_i^2.\) Let \({\hat{\gamma }}^*_i(h)\) be the bootstrap versions of \({\hat{\gamma }}_i(h)\). We have the final result because, thanks to (B1),

$$\begin{aligned} \begin{aligned} |{\hat{\sigma }}_i^2 - {\hat{\sigma }}_i^{2*}|&= |K(0)({\hat{\gamma }}_i(0)-{\hat{\gamma }}_i^*(0)) \\&\quad +\,2K\left( \frac{1}{l}\right) ({\hat{\gamma }}_i(1)-{\hat{\gamma }}_i^*(1)) + \cdots + 2K\left( \frac{l}{l}\right) ({\hat{\gamma }}_i(l) - {\hat{\gamma }}_i^*(l))| \\&\le 2l \max _{0 \le h \le l}|{\hat{\gamma }}_i(h) -{\hat{\gamma }}_i^*(h)| = O_p\left( \frac{l\sqrt{lnT}}{\sqrt{T}}\right) = o_p(1) \end{aligned} \end{aligned}$$

by Theorem 3 of An and Chen (1982). \(\square \)

Proof of Theorem 2

Let \(X_t^*\) be the circular block bootstrap sample \(X_t^{*CB},~t=1,\ldots ,T\). Let \(S_T^{**}(z)=\frac{1}{\sqrt{T}}\sum _{t=1}^{[Tz]}{\hat{u}}_t^{**}\) where \({\hat{u}}_t^{**}={\hat{\Sigma }}^{-1/2}(X_t^*-{\bar{X}}^*),~{\bar{X}}^*=\frac{1}{T}\sum _{t=1}^TX_t^*\). If we show \(S_T^{**}(\cdot ) {\mathop {\longrightarrow }\limits ^\mathrm{d^*}} {\hat{\Sigma }}^{-1/2}B^{e0}(\cdot ),~B^{e0}(z)=B^e(z) - zB^e(1)\), in probability, then the result follows from the continuous mapping theorem. By Lemma A.1,

$$\begin{aligned} S_T^{**}(z) -S_T^{*}(z)= & {} \frac{1}{\sqrt{T}} \sum _{t=1}^{[Tz]} {\hat{\Sigma }}^{-1/2}({\bar{X}}- {\bar{X}}^*) \\= & {} \frac{[Tz]}{\sqrt{T}}{\hat{\Sigma }}^{-1/2}({\bar{X}}- {\bar{X}}^*) {\mathop {\longrightarrow }\limits ^\mathrm{d^*}} -{\hat{\Sigma }}^{-1/2}zB^e(1), \text { in probability}. \end{aligned}$$

Since \(S_T^*(z) {\mathop {\longrightarrow }\limits ^\mathrm{d^*}} {\hat{\Sigma }}^{-1/2} B^e(z)\), by Lemma A.1, we have \(S_T^{**} (z) {\mathop {\longrightarrow }\limits ^\mathrm{d^*}} {\hat{\Sigma }}^{-1/2} (B^e(z) - zB^e(1)) = {\hat{\Sigma }}^{-1/2} B^{e0}(z)\), in probability. We thus have the result because of \(({\hat{\Sigma }}^*-{\hat{\Sigma }} {\mathop {\longrightarrow }\limits ^\mathrm{p}} 0)\). \(\square \)

Proof of Theorem 3

We get the result easily by replacing circular block bootstrapping sample \(X^{*}\) with \(X^{*SB}\) in Proof of Theorem 2. \(\square \)

Proof of Theorem 4

It is enough to show, conditionally on \(X_1,\ldots ,X_T\), as \(T \rightarrow \infty \), (i) \(\sup _{0 \le z \le 1}|{V}_{N,T}^*(z)| =O_p(1),\) (ii) \(\sup _{0 \le z \le 1} |{V}_{N,T}(z)| {\mathop {\longrightarrow }\limits ^\mathrm{p}} \infty \). We first show (i). Note that, under the alternative hypothesis, conditionally on the sample, \(X_{i,t}^*\) do not have mean change because of random block selection. We therefore have (i) by the same arguments as that in the proof of Theorem 2.

We next show (ii). Choose an i such that \(\delta _i\ne 0\). It suffices to show that \( \sup _{0 \le z \le 1} {Z}_{i,T}^2(z) {\mathop {\longrightarrow }\limits ^\mathrm{p}} \infty .\) We have \({Z}_{i,T}(z) = \frac{1}{{\hat{\sigma }}_i \sqrt{T}} (\sum _{t=1}^{[Tz]}e_{i,t} - \frac{[Tz]}{T} \sum _{t=1}^T e_{i,t}) + \frac{1}{{\hat{\sigma }}_i\sqrt{T}}\lambda _{i,T}(z),\) where \(\lambda _{i,T}(z) = -\delta _i[Tz](\frac{T-t_0}{T}),\) if \([Tz] \le t_0\le T\); \(\lambda _{i,T}(z) = -\delta _it_0(\frac{T-[Tz]}{T}), \) otherwise. By Theorem 1, we have

$$\begin{aligned} \begin{aligned} {Z}_{i,T}^2(z)&= \left\{ \frac{1}{{\hat{\sigma }}_i}B_i^{e0}(z)\right\} ^2 + \frac{2}{{\hat{\sigma }}_i^{2}\sqrt{T}}B_i^{e0}(z) \lambda _{i,T}(z) + \frac{1}{{\hat{\sigma }}_i^{2}T}\lambda _{i,T}^2(z)+o_p(1)\\&= \frac{A_1+A_2+A_3}{{\hat{\sigma }}_i^{2}}+o_p(1). \end{aligned} \end{aligned}$$

We have \(\sup _z A_1=O_p(1)\). The result follows if we show \(\frac{1}{\sqrt{T}}\sup _z|A_2|=O_p(1)\), \(\liminf _{T\rightarrow \infty }\)\(\sup _z\frac{A_3}{T}>0\), and \(\lim {\hat{\sigma }}_i^{2}/T {\mathop {\longrightarrow }\limits ^\mathrm{p}} 0\). We denote \({\underline{\tau }} := \liminf _{T\rightarrow \infty } \frac{t_0}{T} \text { and } {\overline{\tau }}:= \limsup _{T\rightarrow \infty } \frac{t_0}{T}.\) In case of \([Tz] \le t_0 \le T\), we have

$$\begin{aligned} \frac{1}{T^2} \lambda _{i,T}^2(z) = \frac{1}{T^2} \delta _i^2\left( \frac{[Tz](T-t_0)}{T}\right) ^2 \ge \frac{[Tz]^2}{T^2} (1- {\overline{\tau }})^2 \delta _i^2=D_1(z) \end{aligned}$$

and in case of \(0 \le t_0 \le [Tz]\),

$$\begin{aligned} \frac{1}{T^2} \lambda _{i,T}^2(z) = \frac{1}{T^2} \delta _i^2 \left( \frac{t_0(T-[Tz])}{T}\right) ^2 \ge \frac{(T-[Tz])^2}{T^2} {\underline{\tau }}^2 \delta _i^2=D_2(z). \end{aligned}$$

Therefore,

$$\begin{aligned} \begin{aligned} \liminf _{T\rightarrow \infty } \sup _z\frac{A_3}{T}&= \liminf _{T \rightarrow \infty }\sup _{0 \le z \le 1}\frac{1}{T^2}\lambda _{i,T}^2(z) \ge \lim _{T \rightarrow \infty } \max \left( D_1\left( \frac{t_0}{T}\right) , D_2\left( \frac{t_0}{T}\right) \right) \\&= \delta _i^2{\underline{\tau }}^2(1-{\overline{\tau }})^2>0. \\ \end{aligned} \end{aligned}$$

From the above analysis for \(A_3\), we have \(\frac{1}{\sqrt{T}}\sup _z|A_2|=O_p(1).\) We complete the proof by showing \({\hat{\sigma }}_i^{2}/T {\mathop {\longrightarrow }\limits ^\mathrm{p}} 0\). Let \({\hat{\sigma }}_i^2(L,X)\) be the estimator of the long run variance \(\sigma _i^2\) constructed with bandwidth L from data X. Then \({\hat{\sigma }}_i^2 = {\hat{\sigma }}_i^2 (l,X_i)\). Let \(e_i = (e_{i1}, \ldots , e_{iT})'\). Then, \({\hat{\sigma }}_i^2 (l,e_i) {\mathop {\longrightarrow }\limits ^\mathrm{p}} \sigma _i^2\) because \(l^{-1} + l/T=o(1)\). We need to show \(T^{-1}{\hat{\sigma }}_i^2 = T^{-1} {\hat{\sigma }}_i^2(l,X_i) {\mathop {\longrightarrow }\limits ^\mathrm{p}} 0\). Let \({\hat{\gamma }}_i^e(h) = \frac{1}{T} \sum _{t=h+1}^T (e_{it} - {\bar{e}}_i)(e_{i,t-1}-{\bar{e}}_i)\), \({\bar{e}}_i = \frac{1}{T}\sum _{t=1}^T e_{it}\). We have \(|{\hat{\gamma }}_i(h) - {\hat{\gamma }}_i^e(h)| \le M\), uniformly in \(t_0\), h and T, because \(X_{it} = e_{it} + \delta _i I_{\{t \ge t_0\}}.\) We have \(|{\hat{\sigma }}_i^2(l, X_i) - {\hat{\sigma }}_i^2(l,e_i)| \le \sum _{h=-l}^l |{\hat{\gamma }}_i(h) - {\hat{\gamma }}_i^e(h)| \le M(2l+1),\) uniformly in i, \(t_0\), T. Therefore, \(\frac{1}{T}{\hat{\sigma }}_i^2(l,X_i) = \frac{1}{T} {\hat{\sigma }}_i^2(l,e_i) + O_p(l/T) {\mathop {\longrightarrow }\limits ^\mathrm{p}} 0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JE., Shin, D.W. Block bootstrapping for a panel mean break test. J. Korean Stat. Soc. 49, 802–821 (2020). https://doi.org/10.1007/s42952-019-00034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-019-00034-8

Keywords

Mathematics Subject Classification

Navigation