Skip to main content
Log in

Empirical likelihood method for longitudinal data generated from unequally-spaced Lèvy processes

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

By introducing the notion of “empirical likelihood function of observing sums”, unequally-spaced time series data and longitudinal data generated from Lévy processes can be analyzed. Characteristic function is further incorporated to handle the situations where the density function of the increments is difficult to obtain. In the situations where both characteristic function and the density function are available, it is shown through the simulation examples that the proposed empirical maximum likelihood method does not suffer from significant information loss comparing to the maximum likelihood estimation method. The performances of the proposed method is tested for both equally-spaced and unequally-spaced observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achcar, J. A., Coelho-Barros, E. A., Cuevas, J. R. T., & Mazucheli, J. (2018). Use of Lévy distribution to analyze longitudinal data with asymmetric distribution and presence of left censored data. Communications for Statistical Applications and Methods, 2018(25), 43–60.

    Article  Google Scholar 

  • Chan, N. H., Chen, S. X., Peng, L., & Yu, C. L. (2009). Empirical likelihood methods based on characteristic functions with applications to Lévy processes. Journal of the American Statistical Association, 104(488), 1621–1630.

    Article  MathSciNet  Google Scholar 

  • Cont, R., & Tankov, P. (2004). Financial Modeling with Jump Processes. New York: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Diggle, Peter J., Liang, Kung-Yee, & Zeger, Scott L. (1994). Analysis of Longitudinal Data. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Eckner, A. (2014). A Framework for the Analysis of Unevenly Spaced Time Series Data, Unpublished paper.

  • Elgin, H. (2011). Lévy Processes and Parameter Estimation by Maximum Empirical Likelihood.

  • Heathcote, C. R. (1977). The integrated squared error estimation of parameters. Biometrika, 64(2), 255–264.

    Article  MathSciNet  Google Scholar 

  • Jones, R. H. (1985). Time Series Analysis with Unequally Spaced Data. In E. J. Hannan, P. R. Krishnaiah, & M. M. Rao (Eds.), Handbook of Statistics (Vol. 5, pp. 157–177).

  • Lee, Y., Nelder, J. A., & Pawitan, Y. (2006). Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood. New York: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Li, J., Wang, Z., Liu, X., Zhang, Y., Fu, H., & Liu, C. (2016). A Wiener process model for accelerated degradation analysis considering measurement errors. Microelectronics Reliability, 65, 8–15.

    Article  Google Scholar 

  • Liu, Qing, & Pierce, D. A. (1994). A note on gauss-hermite quadrature. Biometrika, 81(3), 624–629.

    MathSciNet  MATH  Google Scholar 

  • Liu, Z. (2016) Time Series Modeling of Irregularly Sampled Multivariate Clinical Data. Ph.D. Dissertation.

  • Merton, R. C. (1976). Option pricing when the underlying stock returns are discontinuous. Journal of Financial Economics, 3, 125–144.

    Article  Google Scholar 

  • Nunez-Anton, V., & Woodworth, G. G. (1994). Analysis of longitudinal data with unequally spaced observations and time- dependent correlated errors. Biometrika, 50(2), 445–456.

    Article  Google Scholar 

  • Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects Models in S and S-PLUS. New York: Springer.

    Book  Google Scholar 

  • Parzen, E. (Ed.). (1984). Time Series Analysis of Irregularly Observed Data (Vol. 25, pp. 158–188). Lecture Notes in Statistics, New York: Springer.

  • Rehfeld, K., Marwan, N., Heitzig, J., & Kurths, J. (2011). Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Processes in Geophysics, 18, 389–404.

    Article  Google Scholar 

  • Shu, Y., Feng, Q., Kao, E. P. C., & Liu, H. (2016). Lévy-driven non-Gaussian Ornstein–Uhlenbeck processes for degradation-based reliability analysis. IIE Transaction, 48, 993–1003.

    Article  Google Scholar 

  • Sueshi, N., & Nishiyama Y. (2005). Estimation of Lèvy processes in mathematical finance: A comparative study. mssanzorgau, pp. 953–959.

  • Vališ, D., & Mazurkiewica, D. (2018). Application of selected Levy processes for degradation modelling of long range mine belt using real-time data. Archives of Civil and Mechanical Engineering, 18, 1430–1440.

    Article  Google Scholar 

  • Zhang, Z., Si, X., Hu, C., & Lei, Y. (2018). Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods. European Journal of Operational Research, 271, 775–796.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Chi Tim, Ng’s work is supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2017R1C1B2011652).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Tim Ng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Integration via adaptive Gauss Hermite (AGH) quadrature method

In this appendix, adaptive Gauss Hermite (AGH) quadrature method (see Liu and Pierce 1994) is described for the evaluation of the integral in (18). Denote by \(\exp [-G( {b})]\) the integrand. This means that

$$\begin{aligned} G(b)=-\sum ^q_{\ell =1}\mathcal {L}(\varvec{\theta }_{i\ell }(b);Y_{i\ell })-\log f(b). \end{aligned}$$

The gradient and Hessian of \(\mathcal {L}(\varvec{\theta }_{i\ell }(b);Y_{i\ell })\) will be given later on. Choose \(b_0 = \arg max_{b} \left[ -G( b) \right]\). Let \(y=(b- b_0)\sqrt{ G{''}(b_0 )/2 }\) and \(\sigma =\sqrt{ 1/G{''}(b_0 )}\). Then, \(b =b_0+ \sqrt{2} \sigma \cdot y\) and \(db = \sqrt{2} \sigma dy\). Consider

$$\begin{aligned}&\int exp \left( -G(b) \right) db \nonumber \\&\quad = exp (-G(b_0)) \int \{ {exp \left( - G(b)+G(b_0) + \frac{1}{2} G^{''}(b_0)(b -b_0)^2 \right) } \nonumber \\&\qquad \cdot {exp \left( -\frac{1}{2} G^{''}(b_0)(b -b_0)^2 \right) \}} db \nonumber \\&\quad = exp (-G(b_0)) \sqrt{2} \sigma \cdot \int {exp \left( - G(b_0 + \sqrt{2}\sigma y)+G(b_0) + y^2 \right) }\cdot {exp ( -y^2 )}d{y} \nonumber \\&\quad \simeq \sqrt{2} \sigma \cdot \sum _{s=1}^r \omega _j exp ( y_s^2 ) \cdot exp \left( - G(b_0 + \sqrt{2}\sigma y_s) -y_s^2 \right) . \end{aligned}$$
(A.1)

On the right-hand-side of (A.1), the values of \(w_s\) and \(y_s\) for \(j=1,2,\dots ,r\) can be obtained easily using R package fastGHQuad. In the computation, \(r=4\) nodes are used.

Below, the gradient and Hessian of \(\mathcal {L}(\varvec{\theta }_{i\ell }(b);Y_{i\ell })\) are given. For brevity, we suppress the notation of i and \(\ell\) and write \(\mathcal {H}_j(b)\) for \(\mathcal {H}(U,\frac{\Delta Y_{ij\ell }}{\Delta T_{ij}},\varvec{\theta }_{i\ell }(b))\,.\) The notation \(\partial\) refers to the first order derivative with respect to a component of b and \(\partial ^2\) refers to the second order derivative with respect to one or two components of b. Then, \(\mathcal {L}(\varvec{\theta }_{i\ell }(b);Y_{i\ell })\) can be rewritten as

$$\begin{aligned} \mathcal {L}(\varvec{\theta }(b);Y) = \sum _{j=1}^n {\frac{\Delta T_j}{T}} \cdot log \left[ 1+\mathcal {H}^T_j(b) \cdot \eta (b) \right] . \end{aligned}$$
(A.2)

Here, \(\eta (b)\) is obtained from Eq. (15) and thus fulfills

$$\begin{aligned} \sum _{i=1}^n {\frac{\Delta T_j}{T}} \cdot \left[ \frac{\mathcal {H}_j (b)}{ 1+\mathcal {H}_j^T(b) \cdot \eta (b)} \right] =0. \end{aligned}$$
(A.3)

Then, the first order derivative is

$$\begin{aligned} \partial \mathcal {L}(\varvec{\theta }(b);Y) = \left[ \sum _{j=1}^n {\frac{\Delta T_j}{T}} \cdot \frac{\partial \mathcal {H}_j(b)}{ 1+\mathcal {H}_j^T(b) \cdot \eta (b)} \right] \cdot \eta (b) \end{aligned}$$

The second order derivative is

$$\begin{aligned} \partial ^2 \mathcal {L}(\varvec{\theta }(b);Y)&=\left( \sum _{j=1}^n {\frac{\Delta T_j}{T}} \cdot \frac{\partial \mathcal {H}^T_j (b)}{ 1+\mathcal {H}_j^T(b) \cdot \eta (b)} \right) \cdot \partial \eta (b)\\&\quad + \left( \sum _{j=1}^n {\frac{\Delta T_j}{T}} \cdot \frac{\partial ^2 \mathcal {H}_j^T (b)}{ 1+\mathcal {H}_j^T(b) \cdot \eta (b)} \right) \cdot \eta (b) \\&\quad - \eta ^T(b) \cdot \left( \sum _{j=1}^n {\frac{\Delta T_j}{T}} \cdot \frac{ \partial \mathcal {H}_j(b)\partial ^T \mathcal {H}_j(b)}{ (1+\mathcal {H}_j^T(b) \cdot \eta (b))^2} \right) \cdot \eta (b) \\&\quad - [\partial \eta (b)]^T \cdot \left( \sum _{j=1}^n {\frac{\Delta T_j}{T}} \cdot \frac{\mathcal {H}_j(b) \partial ^T \mathcal {H}_j (b))}{ (1+\mathcal {H}_j^T(b) \cdot \eta (b))^2} \right) \cdot \eta (b) \end{aligned}$$

Differentiating (A.3) with respect to b yields

$$\begin{aligned}&\left( \sum _{j=1}^n {\frac{\Delta T_i}{T}} \cdot \frac{\mathcal {H}_j (b)\cdot \mathcal {H}_j^T (b)}{ (1+\mathcal {H}_j^T(b) \cdot \eta (b))^2}\right) \partial \eta (b)\\&\quad = \left\{ \sum _{j=1}^n {\frac{\Delta T_j}{T}} \cdot \left[ \frac{\partial \mathcal {H}_j (b)}{ 1+\mathcal {H}_j^T(b) \cdot \eta (b)} \right] - \sum _{j=1}^n {\frac{\Delta T_j}{T}} \cdot \frac{\mathcal {H}_j(b) \cdot \partial \mathcal {H}_j (b)^T}{ (1+\mathcal {H}_j^T(b) \cdot \eta (b))^2} \cdot \eta (b)\right\} . \end{aligned}$$

\(\partial \eta (b)\) can therefore be solved from the above system of linear equations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.K., Ng, C.T. & Na, M.H. Empirical likelihood method for longitudinal data generated from unequally-spaced Lèvy processes. J. Korean Stat. Soc. 49, 1008–1025 (2020). https://doi.org/10.1007/s42952-019-00047-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-019-00047-3

Keywords

Mathematics Subject Classification

Navigation