Skip to main content

Advertisement

Log in

A Practical Methodology for Waste-to-Energy Facilities to Screen Toxic Combustible Wastes and Priority Metals

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Waste-to-energy technology is an alternative way to reduce fossil fuels and to secure energy resources. This technology can be readily applied to our real society because non-recyclable but combustible wastes are generated every day and the technology is already available and mature as shown in many facilities for waste incineration. However, this technology incurs environmental and human health concerns due to toxic metals in wastes, which have not been effectively managed because metal- and waste-related risk assessment is too time- and resource-consuming for field facilities. Thus, this study suggests a practical methodology to effectively screen toxic combustible wastes and to identify priority metals to be targeted for pollution prevention; and carries out a case study to demonstrate the methodology. The methodology is based on the assessment of toxicity potentials (for instance, cancer, non-cancer, and eco-toxicity potentials) from metals in combustible wastes on a per-energy basis. The toxicity potential is quantified by using (i) the metal contents and lower heating value (LHV) of a combustible waste and (ii) the characterization factors accounting for the fate, exposure, and effect of metals. A case study is performed by applying the methodology to waste cable coating, waste engine oil, waste paint, refuse-derived fuel (RDF), refuse plastic fuel (RPF), waste medium-density fiberboard (MDF), and wastewater sludge. The case study results showed that the cable coating, engine oil, brown paint, RDF, and wastewater sludge had relatively high toxicity potentials, and their priority metals were lead (Pb), zinc, and copper. This study can be used for waste-to-energy facilities to practically screen toxic waste fuels and to determine post-treatment processes that can effectively remove priority metals.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Field, C.B.: Understanding and responding to danger from climate change: the role of key risks in the IPCC AR5. Clim Change 136(3–4), 427–444 (2016). https://doi.org/10.1007/s10584-016-1645-x

    Article  Google Scholar 

  2. Reid, W.V., Chen, D., Goldfarb, L., Hackmann, H., Lee, Y.T., Mokhele, K., Ostrom, E., Raivio, K., Rockstrom, J., Schellnhuber, H.J., Whyte, A.: Earth system science for global sustainability: grand challenges. Science 330(6006), 916–917 (2010). https://doi.org/10.1126/science.1196263

    Article  Google Scholar 

  3. Psomopolos, C.S., Bourka, A., Themelis, N.J.: Waste-to-energy: a review of the status and benefits in USA. Waste Manag 29(5), 1718–1724 (2009). https://doi.org/10.1016/j.wasman.2008.11.020

    Article  Google Scholar 

  4. Kothari, R., Tyagi, V.V., Pathak, A.: Waste-to-energy: a way from renewable energy sources to sustainable development. Renew. Sustain. Energy Rev. 14(9), 3164–3170 (2010). https://doi.org/10.1016/j.rser.2010.05.005

    Article  Google Scholar 

  5. Jung, K.A., Lim, S.R., Kim, Y., Park, J.M.: Opportunity and challenge of seaweed bioethanol based on life cycle CO2 assessment. Environ. Prog. Sustain. Energy 36(1), 200–207 (2017). https://doi.org/10.1002/ep.12446

    Article  Google Scholar 

  6. Saqib, N., Backstrom, M.: Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies. J. Environ. Sci. 36, 9–21 (2015). https://doi.org/10.1016/j.jes.2015.03.006

    Article  Google Scholar 

  7. Saqib, N., Backstrom, M.: Chemical association and mobility of trace elements in 13 different fuel incineration bottom ashes. Fuel 172, 105–117 (2016). https://doi.org/10.1016/j.fuel.2016.01.010

    Article  Google Scholar 

  8. Lim, S.R., Kang, D., Ogunseitan, O.A., Schoenung, J.M.: Potential environmental impacts of light-emitting diodes (LEDs): metallic resources, toxicity, and hazardous waste classification. Environ. Sci. Technol. 45(1), 320–327 (2011). https://doi.org/10.1021/es101052q

    Article  Google Scholar 

  9. Lim, S.R., Kang, D., Ogunseitan, O.A., Schoenung, J.M.: Potential environmental impacts from the metals in incandescent, compact fluorescent lamp (CFL), and light-emitting diode (LED) bulbs. Environ. Sci. Technol. 47(2), 1040–1047 (2013). https://doi.org/10.1021/es302886m

    Article  Google Scholar 

  10. Zhou, Z.G., Ren, Y., Chu, J.Z., Li, N., Zhen, S., Zhao, H., Fan, S., Zhang, H., Xu, P.J., Qi, L., Liang, S.T., Zhao, B.: Occurrence and impact of polychlorinated dibenzo-p-dioxins/dibenzofurans in the air and soil around a municipal solid waste incinerator. J. Environ. Sci. 44, 244–251 (2016). https://doi.org/10.1016/j.jes.2015.11.024

    Article  Google Scholar 

  11. Lim, S.-R., Schoenung, J.M.: Human health and ecological toxicity potentials due to metal content in waste electronic devices with flat panel displays. J. Hazard. Mater. 177(1–3), 251–259 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.025

    Article  Google Scholar 

  12. Lim, S.-R., Schoenung, J.M.: Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities. Waste Manag. 30(8–9), 1653–1660 (2010). https://doi.org/10.1016/j.wasman.2010.04.005

    Article  Google Scholar 

  13. Agrela, F., Beltran, M.G., Cabrera, M., Lopez, M., Rosales, J., Ayuso, J.: Properties of recycled concrete manufacturing with all-in recycled aggregates and processed biomass bottom ash. Waste Biomass Valoriz. 9(7), 1247–1259 (2018). https://doi.org/10.1007/s12649-017-9880-6

    Article  Google Scholar 

  14. Zhu, F.F., Xiong, Y.Q., Wang, Y.Y., Wei, X., Zhu, X.M., Yan, F.W.: Metal behavior in "washing-calcination-changing with bottom ash" system for recycling of four types of fly ashes. Waste Manag. 75, 215–225 (2018). https://doi.org/10.1016/j.wasman.2018.01.032

    Article  Google Scholar 

  15. Guan, Y.D., Chen, X., Zhang, S., Luo, A.C.: Performance of multi-soil-layering system (MSL) treating leachate from rural unsanitary landfills. Sci. Total Environ. 420, 183–190 (2012). https://doi.org/10.1016/j.scitotenv.2011.12.057

    Article  Google Scholar 

  16. Guan, Y.D., La, G.X., Cao, J., Du, Y.H., Zhang, Z.Y., Ge, C., Luo, A.C.: Metal contamination in a soil-rice ecosystem in the vicinity of abandoned rural unsanitary landfill. Asian J. Chem. 25(8), 4199–4202 (2013)

    Article  Google Scholar 

  17. Bai, L., Xie, M.H., Zhang, Y., Qiao, Q.: Pollution prevention and control measures for the bottom blowing furnace of a lead-smelting process, based on a mathematical model and simulation. J. Clean. Prod. 159, 432–445 (2017). https://doi.org/10.1016/j.jclepro.2017.05.057

    Article  Google Scholar 

  18. Rene, E.R., Shu, L., Lens, P.N.L., Jegatheesan, J.V.: Tools, techniques, and technologies for pollution prevention, control, and resource recovery. Environ. Sci. Pollut. Res. 25(6), 5047–5050 (2018). https://doi.org/10.1007/s11356-018-1319-5

    Article  Google Scholar 

  19. Lim, S.-R., Lam, C.W., Schoenung, J.M.: Priority screening of toxic chemicals and industry sectors in the U.S. toxics release inventory: a comparison of the life cycle impact-based and risk-based assessment tools developed by U.S. EPA. J. Environ. Manag. 92(9), 2235–2240 (2011). https://doi.org/10.1016/j.jenvman.2011.04.008

    Article  Google Scholar 

  20. Tian, Z.P., Zhang, B.R., He, C.J., Tang, R.Z., Zhao, H.P., Li, F.T.: The physiochemical properties and metal pollution of fly ash from municipal solid waste incineration. Process Saf. Environ. Protect. 98, 333–341 (2015). https://doi.org/10.1016/j.psep.2015.09.007

    Article  Google Scholar 

  21. Zhou, J.Z., Wu, S.M., Pan, Y., Zhang, L.G., Cao, Z.B., Zhang, X.Q., Yonemochi, S., Hosono, S., Wang, Y., Oh, K., Qian, G.R.: Enrichment of metals in fine particles of municipal solid waste incinerator (MSWI) fly ash and associated health risk. Waste Manag. 43, 239–246 (2015). https://doi.org/10.1016/j.wasman.2015.06.026

    Article  Google Scholar 

  22. Kwak, T.H., Maken, S., Lee, S., Park, J.W., Min, B.R., Yoo, Y.D.: Environmental aspects of gasification of Korean municipal solid waste in a pilot plant. Fuel 85(14–15), 2012–2017 (2006). https://doi.org/10.1016/j.fuel.2006.03.012

    Article  Google Scholar 

  23. Li, Q.H., Long, Y.Q., Zhou, H., Meng, A.H., Tan, Z.C., Zhang, Y.G.: Prediction of higher heating values of combustible solid wastes by pseudo-components and thermal mass coefficients. Thermochim. Acta 658, 93–100 (2017). https://doi.org/10.1016/j.tca.2017.10.013

    Article  Google Scholar 

  24. Kwon, G.-R., Woo, S.H., Lim, S.-R.: Industrial ecology-based strategies to reduce the embodied CO2 of magnesium metal. Resour. Conserv. Recycl. 104, 206–212 (2015). https://doi.org/10.1016/j.resconrec.2015.08.008

    Article  Google Scholar 

  25. Rector, L., Miller, P.J., Snook, S., Ahmadi, M.: Comparative emissions characterization of a small-scale wood chip-fired boiler and an oil-fired boiler in a school setting. Biomass Bioenerg. 107, 254–260 (2017). https://doi.org/10.1016/j.biombioe.2017.10.017

    Article  Google Scholar 

  26. USEtox™ Team: USEtox™ User Manual. USEtox Team, Lyngby (2010)

    Google Scholar 

  27. Ministry of Housing Spatial Planning, and the Environment, Netherlands, Center of Environmental Science LU: Life Cycle Assessment: An Operational Guide to the ISO Standards (2001)

  28. Goedkoop M.J., Heijungs R, Huijbregts M., De Schryver A., Struijs J., Van Zelm R.: ReCiPe 2008, A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, First edition Report I (2008)

  29. Bare, J.C., Norris, G.A., Pennington, D.W., McKone, T.: TRACI: the tool for the reduction and assessment of chemical and other environmental impacts. J. Ind. Ecol. 6(3–4), 49–78 (2003)

    Google Scholar 

  30. Lamnatou, C., Chemisana, D.: Evaluation of photovoltaic-green and other roofing systems by means of ReCiPe and multiple life cycle-based environmental indicators. Build. Environ. 93, 376–384 (2015). https://doi.org/10.1016/j.buildenv.2015.06.031

    Article  Google Scholar 

  31. Rosenbaum, R.K., Bachmann, T.M., Gold, L.S., Huijbregts, M.A.J., Jolliet, O., Juraske, R., Koehler, A., Larsen, H.F., MacLeod, M., Margni, M., McKone, T.E., Payet, J., Schuhmacher, M., Van De Meent, D., Hauschild, M.Z.: USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 13(7), 532–546 (2008)

    Article  Google Scholar 

  32. Lim, S.R., Park, J.M.: Environmental and economic analysis of a water network system using LCA and LCC. AIChE J. 53(12), 3253–3262 (2007)

    Article  Google Scholar 

  33. Son, K.B., Lee, D.S., Lim, S.R.: Effect of technology convergence for tablet PC on potential environmental impacts from metals. Int. J. Sustain. Dev. World Ecol. 23(2), 154–162 (2016). https://doi.org/10.1080/13504509.2015.1106613

    Article  Google Scholar 

  34. Kim, S.H., Lee, S.J., Kim, S.H., Kang, S.E., Lee, D.S., Lim, S.R.: Environmental effects of the technology transformation from hard-disk to solid-state drives from resource depletion and toxicity management perspectives. Integr. Environ. Assess. Manag. 15(2), 292–298 (2019). https://doi.org/10.1002/ieam.4127

    Article  Google Scholar 

  35. California Department of Toxic Substances Control: SB20 Report, vol. 2010. California Department of Toxic Substances Control, Los Angeles (2004)

    Google Scholar 

  36. USEPA: Method 6010C: Inductively Coupled Plasma-Atomic Emission Spectrometry. USEPA, Washington, DC (6010C)

    Google Scholar 

  37. Rosenbaum, R.K., Bachmann, T.M., Gold, L.S., Huijbregts, M.A.J., Jolliet, O., Juraske, R., Koehler, A., Larsen, H.F., MacLeod, M., Margni, M., McKone, T.E., Payet, J., Schuhmacher, M., van de Meent, D., Hauschild, M.Z.: USEtox-the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 13(7), 532–546 (2008). https://doi.org/10.1007/s11367-008-0038-4

    Article  Google Scholar 

  38. Korea National Assembly: Resource Conseration and Recycling Directive. Korea National Assembly, Seoul (2017)

    Google Scholar 

  39. Nunome, Y., Matsumoto, H., Nedjalkov, I., Ueki, Y., Yoshiie, R., Naruse, I.: Combustion behaviors of wasted plastics coated around electric cables in electrically heated drop tube furnaces. J. Mater. Cycles Waste Manag. 20(1), 543–551 (2018). https://doi.org/10.1007/s10163-017-0618-0

    Article  Google Scholar 

  40. Berardi, P., Almeida, M.F., Dias, J.M.: Study of refuse derived fuel viability in Portugal with a focus on regional planning. Waste Manag 72, 1–3 (2018)

    Article  Google Scholar 

  41. Boonpa, S., Sharp, A.: A comparative analysis of alternative fuels for Thailand's palm oil industry: a case study for refuse-derived fuels. Energy Sour A 39(2), 201–205 (2017). https://doi.org/10.1080/15567036.2016.1208305

    Article  Google Scholar 

  42. Hroncova, E., Ladomersky, J., Musil, J.: Problematic issues of air protection during thermal processes related to the energetic uses of sewage sludge and other waste case study: co-combustion in peaking power plant. Waste Manag 73, 574–580 (2018). https://doi.org/10.1016/j.wasman.2017.08.025

    Article  Google Scholar 

  43. Im, H., Kim, C.G.: Characterization of dried sewage sludge for co-firing in coal power plant by using thermal gravimetric analysis. J. Mater. Cycles Waste Manag. 19(3), 1044–1051 (2017). https://doi.org/10.1007/s10163-016-0580-2

    Article  Google Scholar 

  44. Zhang, G., Hai, J., Ren, M.Z., Zhang, S.K., Cheng, J., Yang, Z.R.: Emission, mass balance, and distribution characteristics of PCDD/Fs and metals during cocombustion of sewage sludge and coal in power plants. Environ. Sci. Technol. 47(4), 2123–2130 (2013). https://doi.org/10.1021/es304127k

    Article  Google Scholar 

  45. Arpa, O., Yumrutas, R., Demirbas, A.: Production of diesel-like fuel from waste engine oil by pyrolitic distillation. Appl. Energy 87(1), 122–127 (2010). https://doi.org/10.1016/j.apenergy.2009.05.042

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1A2C1008532).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dae Sung Lee or Seong-Rin Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HS., Park, MG., Yeon, EJ. et al. A Practical Methodology for Waste-to-Energy Facilities to Screen Toxic Combustible Wastes and Priority Metals. Waste Biomass Valor 12, 3431–3442 (2021). https://doi.org/10.1007/s12649-020-01223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01223-x

Keywords

Navigation