Skip to main content
Log in

Studies on the Effect of Processing Parameters on Microstructure and Properties of Magnesium Compacts Prepared via Powder Metallurgy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present study involves the investigation on the effect of processing parameters of powder metallurgy on the microstructure and hardness characteristics of the green as well as sintered specimens of magnesium. The processing parameters include the high-energy ball milling time, compaction pressure, and sintering temperature. From SEM images of 1, 3, and 5 h ball-milled powders, it is revealed that the sequence of change of morphology and size of particles is: flattening (formation of lamellas), fracturing (cracking of lamellas), and dynamic balance (adherence of a small particle with other particles and fracturing), respectively. The average particle size decreases with increasing ball milling time. 0, 1, 3, and 5 h ball-milled powders are compacted at different pressures. It is found that green density of the compacts of ball-milled powders depends on the morphology of powder particles, particle size, and compaction pressure. The selected samples were sintered at 500, 550, and 600 °C for 1 h. SEM characterization indicates that grain growth occurs with increasing sintering temperature. With constant mass, the sintering theory indicates that grain growth of larger particles takes place at the expense of smaller particles due to the difference of surface curvature. The density and hardness of sintered samples were calculated by using Archimedes principle and Vickers hardness tester, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Burke P, and Kipouros G J, High Temp Mater Proc 30 (2011) 51.

    Article  CAS  Google Scholar 

  2. Mordike BL, and T Ebert, Mat Sci Eng A 302 (2001) 37.

    Article  Google Scholar 

  3. Iwaoka T, and Nakamura M, Mat Trans 52 (2011) 943.

    Article  CAS  Google Scholar 

  4. Burke P, Kipouros G J, Fancelli D, and Laverdiere V, Can Met Quart 48 (2009) 123.

    Article  CAS  Google Scholar 

  5. Seth P P, Singh N, Singh M, Prakash O, and kumar D,, J. Alloy. Compo. 821 (2020) 153205.

  6. Gupta P, Kumar D, Parkash O, and Jha A K, Adv Mater Res 585 (2012) 584.

    Article  CAS  Google Scholar 

  7. Gupta P, Kumar D, Parkash O, and Jha A K, Bull Mater Sci 36 (2013) 859.

    Article  CAS  Google Scholar 

  8. Garg P, Jamwal A, Kumar D, Sadasivuni K K, Hussaind C M, and Gupta P, J Mater Res Technol 8 (2019) 4924.

    Article  CAS  Google Scholar 

  9. Saxena A, Singh N, Singh B, Kumar D, Sadasivuni K K and Gupta P, J Mater Des Appl 0 (2019) 1.

    Google Scholar 

  10. Tekumalla S, Chun L S, and Gupta M, Metal Powder Rep 74 (2019) 137.

    Article  Google Scholar 

  11. Hwang S, Nishimura C, and McCormick P G, Mater Sci Eng A 318 (2001) 22.

    Article  Google Scholar 

  12. Alias J, Harun WSW, and Ayu HM, Key Eng Mater 796 (2019) 3.

    Article  Google Scholar 

  13. Wu ZM, Liang YX, Fan Y,Wang PP, Du JL, Zhao YB, and Fu EG, Powder Technol 339 (2018) 256.

    Article  CAS  Google Scholar 

  14. Kurlov A S, and Gusev A I, Technol Phys Let 33 (2007) 46.

    Google Scholar 

  15. Dixit M, and Srivastava R K, Mater Sci Eng 377 (2018) 1.

    Google Scholar 

  16. Koley S, Ghosh A, Sahu A K, Tewari R, and Suri AK, Cer Int 37 (2011) 731.

    Article  CAS  Google Scholar 

  17. Garg P, Park S J, German RM, Int J Refract Metal Hard Mater 25 (2007)16.

    Article  CAS  Google Scholar 

  18. Narayanasamy P, and Selvakumar N, Trans Nonferrous Met Soc China 27 (2017) 312.

    Article  CAS  Google Scholar 

  19. Zak A K, Majid W H A, Abrishami M E, and Yousefi R, Solid State Sci 13 (2011) 251.

    Article  Google Scholar 

  20. Gautam R K S, Rao U S, and Tyagi R, Surf Coat Technol 372 (2019) 390.

    Article  CAS  Google Scholar 

  21. Liang Y X, Wu Z M, Fu E G, Du J L, Wang P P, Zhao Y B, Qiu Y H, and Hu Z Y, Int J Refract Metals Hard Mater 67 (2017) 1.

    Article  CAS  Google Scholar 

  22. Partal G, Euvard E, Tailhand P, and Rousset A, Powder Metals 42 (1999) 1.

    Google Scholar 

  23. Sheppard T, and McShane H B, Powder Metals 3 (1980) 120.

    Article  Google Scholar 

  24. Moon I H and Kim K H, Powder Metals 27 (1984) 80.

    Article  Google Scholar 

  25. Heckel W R, Tran Metals Soc AIME 221 (1961) 671.

    CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge CIF, Indian Institute of Technology (BHU), for providing instrument facility. One of the authors, Mr. Prem Prakash acknowledges Indian Institute of Technology (BHU) for proving funds as financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seth, P.P., Parkash, O. & Kumar, D. Studies on the Effect of Processing Parameters on Microstructure and Properties of Magnesium Compacts Prepared via Powder Metallurgy. Trans Indian Inst Met 73, 2715–2726 (2020). https://doi.org/10.1007/s12666-020-02082-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02082-9

Keywords

Navigation