Skip to main content
Log in

A lightweight solution to epileptic seizure prediction based on EEG synchronization measurement

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

It is critical to determine whether the brain state of an epilepsy patient is indicative of a possible seizure onset; thus, appropriate therapy or alarm may be delivered in time. Successful seizure prediction relies on the capability of accurately separating the preictal stage from the interictal stage of ictal electroencephalography (EEG). With the booming of brain e-health technologies, there exists a pressing need for an approach that provides accurate seizure prediction while operating efficiently on edge computing platforms with very limited computing resources in Internet of Things environments. This study proposes a lightweight solution to this problem based on synchronization measurement of multivariate EEG captured from multiple brain regions consisting of two phases, i.e., synchronization measurement and classification. For phase one, Pearson correlation coefficient is calculated to obtain the correlation matrices. For phase two, the correlation matrices are classified to distinguish the preictal states from the interictal ones with a simple CNN model, and seizure onset can then be predicted. Experiments have been performed to evaluate the performance of the lightweight solution on the CHB-MIT scalp EEG dataset. The experimental results indicate that: (1) the solution outperforms most of the state-of-the-art counterparts with a high accuracy of seizure prediction (\(89.98\%\) for 15 mins alarm in advance) for all subjects, and (2) the solution incurs a very low computational overhead and holds potentials in brain e-health applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://physionet.nlm.nih.gov/pn6/chbmit/HEADER.shtml.

References

  1. Acharya UR, Hagiwara Y, Adeli H (2018) Automated seizure prediction. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2018.09.030

    Article  Google Scholar 

  2. Amir E, Walid J, Jamil EI, Constandinou TG, Christofer T (2014) Ngram-derived pattern recognition for the detection and prediction of epileptic seizures. Plos One 9(6):e96235

    Article  Google Scholar 

  3. Assi EB, Dang KN, Rihana S, Sawan M (2017) Towards accurate prediction of epileptic seizures: a review. Biomed Sig Process Control 34:144–157

    Article  Google Scholar 

  4. Behnam M, Pourghassem H (2016) Real-time seizure prediction using rls filtering and interpolated histogram feature based on hybrid optimization algorithm of bayesian classifier and hunting search. Comp Meth Progr Biomed 132:115–136

    Article  Google Scholar 

  5. Chen D, Li X, Cui D, Wang L, Lu D (2014) Global synchronization measurement of multivariate neural signals with massively parallel nonlinear interdependence analysis. IEEE Trans Neural Syst Rehabilit Eng 22(1):33–43

    Article  Google Scholar 

  6. Chen D, Tang Y, Zhang H, Wang L, Li X (2019) Incremental factorization of big time series data with blind factor approximation. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2019.2931687

    Article  Google Scholar 

  7. Cho D, Min B, Kim J, Lee B (2016) Eeg-based prediction of epileptic seizures using phase synchronization elicited from noise-assisted multivariate empirical mode decomposition. IEEE Trans Neural Syst Rehabil Eng 99:1–1

    Google Scholar 

  8. Fei K, Wang W, Yang Q, Tang S (2017) Chaos feature study in fractional fourier domain for preictal prediction of epileptic seizure. Neurocomputing 249:290–298

    Article  Google Scholar 

  9. Fkreuz M (2005) On the predictability of epileptic seizures. Dkgest World Latest Med Inf 116(3):569–587

    Google Scholar 

  10. Gadhoumi K, Lina JM, Gotman J (2012) Discriminating preictal and interictal states in patients with temporal lobe epilepsy using wavelet analysis of intracerebral eeg. Clin Neurophysiol Off J Int Federat Clin Neurophysiol 123(10):1906–1916

    Article  Google Scholar 

  11. Hosseini MP, Soltanian-Zadeh H, Elisevich K, Pompili D (2017) Cloud-based deep learning of big eeg data for epileptic seizure prediction. In: Signal and Information Processing

  12. Iasemidis LD, Deng-Shan S, Wanpracha C, Sackellares JC, Pardalos PM, Principe JC, Carney PR, Awadhesh P, Balaji V, Konstantinos T (2003) Adaptive epileptic seizure prediction system. IEEE Trans Biomed Eng 50(5):616–627

    Article  Google Scholar 

  13. Ibrahim S, Majzoub S (2017) Adaptive epileptic seizure prediction based on eeg synchronization. J Biomimet Biomater Biomed Eng 33:52–58

    Article  Google Scholar 

  14. Ke H, Chen D, Li X, Tang Y, Shah T, Ranjan R (2018) Towards brain big data classification: epileptic eeg identification with a lightweight vggnet on global mic. IEEE Access 6:14722–14733. https://doi.org/10.1109/ACCESS.2018.2810882

    Article  Google Scholar 

  15. Ke H, Chen D, Shah T, Liu X, Zhang X, Zhang L, Li X (2020) Cloud-aided online EEG classification system for brain healthcare: a case study of depression evaluation with a lightweight CNN. Softw Pract Exp 50(5):596–610. https://doi.org/10.1002/spe.2668

    Article  Google Scholar 

  16. Ke H, Chen D, Shi B, Zhang J, Liu X, Zhang X, Li X (2020) Improving brain e-health services via high-performance EEG classification with grouping bayesian optimization. IEEE Trans Serv Comput 13(4): 696–708

    Article  Google Scholar 

  17. Khan H, Marcuse L, Fields M, Swann K, Yener B (2018) Focal onset seizure prediction using convolutional networks. IEEE Trans Biomed Eng 65(9):2109–2118

    Article  Google Scholar 

  18. Kuhlmann L, Lehnertz K, Richardson MP, Schelter B, Zaveri HP (2018) Seizure prediction—ready for a new era. Nat Rev Neurol 14(10):618–630

    Article  Google Scholar 

  19. Li S, Zhou W, Yuan Q, Liu Y (2013) Seizure prediction using spike rate of intracranial eeg. IEEE Trans Neural Syst Rehabilit Eng 21(6):880–886

    Article  Google Scholar 

  20. Li X, Dong C, Premysl J, Fox JE, Xin Y, Jefferys JGR (2007) Synchronization measurement of multiple neuronal populations. J Neurophysiol 98(6):3341

    Article  Google Scholar 

  21. Li X, Ouyang G, Richards DA (2007) Predictability analysis of absence seizures with permutation entropy. Epilepsy Res 77(1):70–74

    Article  Google Scholar 

  22. Liang Z, Bai Y, Ren Y, Li X (2016) Synchronization measures in EEG signals. Springer, Singapore, pp 167–202. https://doi.org/10.1007/978-981-10-1822-0_9

    Book  Google Scholar 

  23. Litt B, Echauz J (2002) Prediction of epileptic seizures. Lancet Neurol 1(1):22–30

    Article  Google Scholar 

  24. Mahdi J, Elham B, Knyazeva MG (2014) Synchronization of eeg: bivariate and multivariate measures. IEEE Trans Neural Syst Rehabilit Eng A Publicat IEEE Eng Med a Biol Soc 22(2):212–221

    Article  Google Scholar 

  25. Mormann F, Andrzejak RG, Elger CE, Lehnertz K (2007) Seizure prediction: the long and winding road. Brain 130(Pt 2):314

    Article  Google Scholar 

  26. Myers MH, Akshay P, Gahangir H, de Jongh Curry AL, Blaha CD (2016) Seizure prediction and detection via phase and amplitude lock values. Front Human Neurosci 10(80)

  27. Namazi H, Kulish VV, Hussaini J, Hussaini J, Delaviz A, Delaviz F, Habibi S, Ramezanpoor S (2015) A signal processing based analysis and prediction of seizure onset in patients with epilepsy. Oncotarget 7(1):342–350

    Article  Google Scholar 

  28. Parvez MZ, Paul M (2015) Seizure prediction by analyzing eeg signal based on phase correlation. In: Engineering in Medicine and Biology Society (2015)

  29. Parvez MZ, Paul M (2016) Epileptic seizure prediction by exploiting spatiotemporal relationship of eeg signals using phase correlation. IEEE Trans Neural Syst Rehabilit Eng Publicat IEEE Eng Med Biol Soc 24(1):158

    Article  Google Scholar 

  30. Reshef DN, Reshef YA, Finucane HK, Grossman SR, Gilean MV, Turnbaugh PJ, Lander ES, Michael M, Sabeti PC (2011) Detecting novel associations in large data sets. Science 334(6062):1518

    Article  Google Scholar 

  31. Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. American Stat 42(1):59–66

    Article  Google Scholar 

  32. Sareen S, Sood SK, Gupta SK (2016) An automatic prediction of epileptic seizures using cloud computing and wireless sensor networks. J Med Syst 40(11):226

    Article  Google Scholar 

  33. Sharma A, Rai JK, Tewari RP (2015) Epileptic seizure prediction and identification of epileptogenic region using eeg signal. In: International Conference on Green Computing and Internet of Things

  34. Shi W, Jie C, Quan Z, Li Y, Xu L (2016) Edge computing: vision and challenges. IEEE Int Things J 3(5):637–646

    Article  Google Scholar 

  35. Truong ND, Nguyen AD, Kuhlmann L, Bonyadi MR, Yang J, Kavehei O (2017) A generalised seizure prediction with convolutional neural networks for intracranial and scalp electroencephalogram data analysis. CoRR abs/1707.01976

  36. Tsiouris KM, Pezoulas VC, Zervakis M, Konitsiotis S, Koutsouris DD, Fotiadis DI (2018) A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput Biol Med 99:24–37

    Article  Google Scholar 

  37. Wen Z, Lin T, Yang R, Ji S, Ranjan R, Romanovsky A, Lin C, Xu J (2020) Ga-par: dependable microservice orchestration framework for geo-distributed clouds. IEEE Trans Parallel Distrib Syst. https://doi.org/10.1109/TPDS.2019.2929389

    Article  Google Scholar 

  38. Yadollahpour A, Jalilifar M (2014) Seizure prediction methods: a review of the current predicting techniques. Biomed Pharmacol J 7(7):153–162

    Article  Google Scholar 

  39. Zhang H, Lai D, Xie C, Zhang H, Chen W (2017) Directed-transfer-function based analysis for epileptic prediction. In: International Congress on Image and Signal Processing

  40. Zhang Z, Parhi KK (2016) Low-complexity seizure prediction from ieeg/seeg using spectral power and ratios of spectral power. IEEE Trans Biomed Circuits Syst 10(3):693–706

    Article  Google Scholar 

  41. Zheng Y, Wang G, Li K, Bao G, Wang J (2014) Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition. Clin Neurophysiol 125(6):1104–1111

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Nature Science Foundation of China (No. 61772380), the Foundation for Innovative Research Groups of Hubei Province (No. 2017CFA007) and Major Project for Technological Innovation of Hubei Province (No. 2019AAA044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Chen, D., Ranjan, R. et al. A lightweight solution to epileptic seizure prediction based on EEG synchronization measurement. J Supercomput 77, 3914–3932 (2021). https://doi.org/10.1007/s11227-020-03426-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03426-4

Keywords

Navigation