Skip to main content

Advertisement

Log in

Selective Synthesis of 2D Mesoporous CuO Agglomerates by Pulsed Spark Discharge in Water

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Metal oxide nanomaterials, including copper oxide, have attracted great attention due to their unique physical and chemical properties that are dependent on particle size and morphology. In this study, we propose an alternative technique for the synthesis of 2D mesoporous CuO agglomerates that is both efficient and ecological. This technique is based on the use of pulsed spark discharges between copper electrodes immersed in deionized water. Detailed TEM analyses show that the synthesized CuO nanostructures are composed of elementary nanocrystals with sizes in the order of a few nanometers. Assessments of the effects of applied voltage (5 and 20 kV) and discharge pulse width (100 and 500 ns) demonstrate that the latter parameter influences the size and density of nanocrystals in a nanostructure. Moreover, voltage and pulse width may both be used to finely control the direct optical band gap energy of CuO nanostructures between 3.0 and 3.4 eV. The efficient and ecological technique developed in this study produces 2D mesoporous CuO agglomerates that can be readily used in other processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu X, Marks TJ, Facchetti A (2016) Metal oxides for optoelectronic applications. Nat Mater 15(4):383–396

    CAS  PubMed  Google Scholar 

  2. Feng Y, Jiang X, Ghafari E, Kucukgok B, Zhang C, Ferguson I, Lu N (2018) Metal oxides for thermoelectric power generation and beyond. Adv Compos Hybrid Mater 1(1):114–126

    CAS  Google Scholar 

  3. Yang Y, Niu S, Han D, Liu T, Wang G, Li Y (2017) Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv Energy Mater 7(19):1700555

    Google Scholar 

  4. Ray C, Pal T (2017) Recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J Mater Chem A 5(20):9465–9487

    CAS  Google Scholar 

  5. Stankic S, Suman S, Haque F, Vidic J (2016) Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnol 14(1):73

    Google Scholar 

  6. Zhang X, Dong CL, Diao Z, Lu YR, Shen S (2019) Identifying the crystal and electronic structure evolution in tri-component transition metal oxide nanosheets for efficient electrocatalytic oxygen evolution. EcoMat 1(1):e12005

    CAS  Google Scholar 

  7. Vayssieres L (2004) On the design of advanced metal oxide nanomaterials. Int J Nanotechnol 1(1–2):1–41

    CAS  Google Scholar 

  8. Mei J, Liao T, Kou L, Sun Z (2017) Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv Mater 29(48):1700176

    Google Scholar 

  9. Zhu S, Li J, Deng X, He C, Liu E, He F, Shi C, Zhao N (2017) Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes. Adv Function Mater 27(9):1605017

    Google Scholar 

  10. Zheng M, Tang H, Li L, Hu Q, Zhang L, Xue H, Pang H (2018) Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci 5(3):1700592

    Google Scholar 

  11. Wang Y, Lany S, Ghanbaja J, Fagot-Revurat Y, Chen YP, Soldera F, Horwat D, Mucklich F, Pierson JF (2016) Electronic structures of Cu2O, Cu4O3, and CuO: a joint experimental and theoretical study. Phys Rev B 94(24):245418

    Google Scholar 

  12. Kazimierczuk T, Fröhlich D, Scheel S, Stolz H, Bayer M (2014) Giant Rydberg excitons in the copper oxide Cu2O. Nature 514(7522):343–347

    CAS  PubMed  Google Scholar 

  13. Boltaev GS, Ganeev RA, Krishnendu PS, Zhang K, Guo C (2019) Nonlinear optical characterization of copper oxide nanoellipsoids. Sci Rep 9(1):1–8

    CAS  Google Scholar 

  14. Heinemann M, Eifert B, Heiliger C (2013) Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3. Phys Rev B 87(11):115111

    Google Scholar 

  15. Rhodin TN Jr (1950) Low temperature oxidation of copper. I. Physical mechanism. J Am Chem Soc 72(11):5102–5106

    CAS  Google Scholar 

  16. Yang JC, Kolasa B, Gibson JM, Yeadon M (1998) Self-limiting oxidation of copper. Appl Phys Lett 73(19):2841–2843

    CAS  Google Scholar 

  17. Kaur M, Muthe KP, Despande SK, Choudhury S, Singh JB, Verma N, Yakhmi JV (2006) Growth and branching of CuO nanowires by thermal oxidation of copper. J Cryst Growth 289(2):670–675

    CAS  Google Scholar 

  18. Xiang L, Guo J, Wu C, Cai M, Zhou X, Zhang N (2018) A brief review on the growth mechanism of CuO nanowires via thermal oxidation. J Mater Res 33(16):2264–2280

    CAS  Google Scholar 

  19. Anandan S, Wen X, Yang S (2005) Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater Chem Phys 93(1):35–40

    CAS  Google Scholar 

  20. Nerle U, Rabinal MK (2013) Thermal oxidation of copper for favorable formation of cupric oxide (CuO) semiconductor. IOSR J Appl Phys 5(1):1–7

    Google Scholar 

  21. Altaweel A, Filipič G, Gries T, Belmonte T (2014) Controlled growth of copper oxide nanostructures by atmospheric pressure micro-afterglow. J Cryst Growth 407:17–24

    CAS  Google Scholar 

  22. Altaweel A, Gries T, Migot S, Boulet P, Mézin A, Belmonte T (2016) Localised growth of CuO nanowires by micro-afterglow oxidation at atmospheric pressure: investigation of the role of stress. Surf Coat Technol 305:254–263

    CAS  Google Scholar 

  23. Bayansal F, Kahraman S, Çankaya G, Çetinkara HA, Güder HS, Çakmak HM (2011) Growth of homogenous CuO nano-structured thin films by a simple solution method. J Alloy Compd 509(5):2094–2098

    CAS  Google Scholar 

  24. Dong TY, Chen CN, Cheng HY, Chen CP, Jheng NY (2011) Controlled morphologies of copper oxide single crystalline nanostructures by wet chemistry and thermal decomposition processes. Inorg Chim Acta 367(1):158–165

    CAS  Google Scholar 

  25. Volanti DP, Keyson D, Cavalcante LS, Simões AZ, Joya MR, Longo E, Souza AG (2008) Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave. J Alloy Compd 459(1–2):537–542

    CAS  Google Scholar 

  26. Prathap MA, Kaur B, Srivastava R (2012) Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. J Colloid Interface Sci 370(1):144–154

    PubMed  Google Scholar 

  27. Allam NK, Grimes CA (2011) Electrochemical fabrication of complex copper oxide nanoarchitectures via copper anodization in aqueous and non-aqueous electrolytes. Mater Lett 65(12):1949–1955

    CAS  Google Scholar 

  28. Sarkar DK, Zhou XJ, Tannous A, Leung KT (2003) Growth mechanisms of copper nanocrystals on thin polypyrrole films by electrochemistry. J Phys Chem B 107(13):2879–2881

    CAS  Google Scholar 

  29. Gou L, Murphy CJ (2003) Solution-phase synthesis of Cu2O nanocubes. Nano Lett 3(2):231–234

    CAS  Google Scholar 

  30. Chang Y, Teo JJ, Zeng HC (2005) Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 21(3):1074–1079

    CAS  PubMed  Google Scholar 

  31. Velusamy T, Liguori A, Macias-Montero M, Padmanaban DB, Carolan D, Gherardi M, Mariotti D (2017) Ultra-small CuO nanoparticles with tailored energy-band diagram synthesized by a hybrid plasma-liquid process. Plasma Processes Polym 14(7):1600224

    Google Scholar 

  32. Belmonte T, Hamdan A, Kosior F, Noël C, Henrion G (2014) Interaction of discharges with electrode surfaces in dielectric liquids: application to nanoparticle synthesis. J Phys D Appl Phys 47(22):224016

    Google Scholar 

  33. Hamdan A, Noël C, Ghanbaja J, Belmonte T (2014) Comparison of aluminium nanostructures created by discharges in various dielectric liquids. Plasma Chem Plasma Process 34(5):1101–1114

    CAS  Google Scholar 

  34. Kabbara H, Ghanbaja J, Noël C, Belmonte T (2018) Synthesis of copper and zinc nanostructures by discharges in liquid nitrogen. Mater Chem Phys 207:350–358

    CAS  Google Scholar 

  35. Glad X, Profili J, Cha MS, Hamdan A (2020) Synthesis of copper and copper oxide nanomaterials by electrical discharges in water with various electrical conductivities. J Appl Phys 127(2):023302

    CAS  Google Scholar 

  36. Hamdan, A. (2013). Microdécharges dans l’heptane liquide: caractérisation et applications au traitement local des matériaux et à la synthèse de nanomatéraux (Doctoral dissertation, Université de Lorraine)

  37. Hamdan A, Marinov I, Rousseau A, Belmonte T (2013) Time-resolved imaging of nanosecond-pulsed micro-discharges in heptane. J Phys D Appl Phys 47(5):055203

    Google Scholar 

  38. Trad M, Nominé A, Tarasenka N, Ghanbaja J, Noël C, Tabbal M, Belmonte T (2019) Synthesis of Ag and Cd nanoparticles by nanosecond-pulsed discharge in liquid nitrogen. Front Chem Sci Eng 13(2):360–368

    CAS  Google Scholar 

  39. Su D, Xie X, Dou S, Wang G (2014) CuO single crystal with exposed 001 facets-A highly efficient material for gas sensing and Li-ion battery applications. Sci Rep 4:5753

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu J, Jin J, Deng Z, Huang S-Z, Hua Z-Y, Wang L, Wang C, Chen L-H, Li Y, Van Tendeloo G, Su B-L (2012) Tailoring CuO nanostructures for enhanced photocatalytic property. J Colloid Interface Sci 384(1):1–9

    CAS  PubMed  Google Scholar 

  41. Chang Y, Zeng HC (2004) Controlled synthesis and self-assembly of single-crystalline CuO nanorods and nanoribbons. Cryst Growth Des 4(2):397–402

    CAS  Google Scholar 

  42. Herbani Y, Nasution RS, Mujtahid F, Masse S (2018) Pulse laser ablation of Au, Ag, and Cu metal targets in liquid for nanoparticle production. In: Journal of Physics: Conference Series, vol 985, no 1, pp 012005. IOP Publishing

  43. Kazakevich PV, Voronov VV, Simakin AV, Shafeev GA (2004) Production of copper and brass nanoparticles upon laser ablation in liquids. Quantum Electron 34(10):951

    CAS  Google Scholar 

  44. Mohan S, Singh Y, Verma DK, Hasan SH (2015) Synthesis of CuO nanoparticles through green route using Citrus limon juice and its application as nanosorbent for Cr (VI) remediation: process optimization with RSM and ANN-GA based model. Process Saf Environ Prot 96:156–166

    CAS  Google Scholar 

  45. Bouazizi N, Bargougui R, Oueslati A, Benslama R (2015) Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Adv Mater Lett 6(2):158–164

    CAS  Google Scholar 

  46. Zhu J, Chen H, Liu H, Yang X, Lu L, Wang X (2004) Needle-shaped nanocrystalline CuO prepared by liquid hydrolysis of Cu (OAc)2. Mater Sci Eng A 384(1–2):172–176

    Google Scholar 

  47. Son DI, You CH, Kim TW (2009) Structural, optical, and electronic properties of colloidal CuO nanoparticles formed by using a colloid-thermal synthesis process. Appl Surf Sci 255(21):8794–8797

    CAS  Google Scholar 

  48. Dagher S, Haik Y, Ayesh AI, Tit N (2014) Synthesis and optical properties of colloidal CuO nanoparticles. J Lumin 151:149–154

    CAS  Google Scholar 

  49. Zhao J, Liu R, Hua Z (2015) Hydrothermal synthesis and optical properties of single crystalline CuO nanosheets. Superlattices Microstruct 81:243–247

    CAS  Google Scholar 

  50. Wang L, Zhou Q, Zhang G, Liang Y, Wang B, Zhang W, Lei B, Wang W (2012) A facile room temperature solution-phase route to synthesize CuO nanowires with enhanced photocatalytic performance. Mater Lett 74:217–219

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Fonds de Recherche du Québec–Nature et Technologie (FRQ-NT) and the Canada Foundation for Innovation (CFI) for funding the research infrastructure. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 823717–ESTEEM3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Hamdan or Marta Agati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdan, A., Agati, M. & Boninelli, S. Selective Synthesis of 2D Mesoporous CuO Agglomerates by Pulsed Spark Discharge in Water. Plasma Chem Plasma Process 41, 433–445 (2021). https://doi.org/10.1007/s11090-020-10126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10126-7

Keywords

Navigation