Skip to main content
Log in

Defects in the rice aconitase-encoding OsACO1 gene alter iron homeostasis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Key message

Rice aconitase gene OsACO1 is involved in the iron deficiency-signaling pathway for the expression of iron deficiency-inducible genes, either thorough enzyme activity or possible specific RNA binding for post-transcriptional regulation.

Abstract

Iron (Fe) is an essential element for virtually all living organisms. When plants are deficient in Fe, Fe acquisition systems are activated to maintain Fe homeostasis, and this regulation is mainly executed at the gene transcription level. Many molecules responsible for Fe uptake, translocation, and storage in plants have been identified and characterized. However, how plants sense Fe status within cells and then induce a transcriptional response is still unclear. In the present study, we found that knockdown of the OsACO1 gene, which encodes an aconitase in rice, leads to the down-regulation of selected Fe deficiency-inducible genes involved in Fe uptake and translocation in roots, and a decrease in Fe concentration in leaves, even when grown under Fe-sufficient conditions. OsACO1 knockdown plants showed a delayed transcriptional response to Fe deficiency compared to wild-type plants. In contrast, overexpression of OsACO1 resulted in the opposite effects. These results suggest that OsACO1 is situated upstream of the Fe deficiency-signaling pathway. Furthermore, we found that the OsACO1 protein potentially has RNA-binding activity. In vitro screening of RNA interactions with OsACO1 revealed that RNA potentially forms a unique stem-loop structure that interacts with OsACO1 via a conserved GGUGG motif within the loop structure. These results suggest that OsACO1 regulate Fe deficiency response either thorough enzyme activity catalyzing isomerization of citrate, or specific RNA binding for post-transcriptional regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson CP, Shen M, Eisenstein RS, Leibold EA (2012) Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta 1823:1468–1483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armenteros JJA, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, Nielsen H (2019) Detecting sequence signals in targeting peptides using deep learning. Life Sci Alli 2:e201900429

    Google Scholar 

  • Arnaud N, Ravet K, Borlotti A, Touraine B, Boucherez J, Fizames C, Briat JF, Cellier F, Gaymard F (2007) The iron-responsive element (IRE)/iron-regulatory protein 1 (IRP1)-cytosolic aconitase iron-regulatory switch does not operate in plants. Biochem J 405:523–531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aung MS, Kobayashi T, Masuda H, Nishizawa NK (2018) Rice HRZ ubiquitin ligases are crucial for response to excess iron. Physiol Plant 163:282–296

    CAS  Google Scholar 

  • Balk J, Schaedler TA (2014) Iron cofactor assembly in plants. Ann Rev Plant Biol 65:125–153

    CAS  Google Scholar 

  • Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281:32395–32402

    CAS  PubMed  Google Scholar 

  • Bashir K, Ishimaru Y, Itai RN, Senoura T, Takahashi M, An G, Oikawa T, Ueda M, Sato A, Uozumi N, Nakanishi H, Nishizawa NK (2015) Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice. Plant Mol Biol 88:165–176

    CAS  PubMed  Google Scholar 

  • Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, Tsutsumi N, An G, Nakanishi H, Nishizawa NK (2011) The rice mitochondrial iron transporter is essential for plant growth. Nat Commun 2:1–7

    Google Scholar 

  • Bellis L, Hayashi M, Biagi PP, Hara-Nishimura I, Alpi A, Nishimura M (1994) Immunological analysis of aconitase in pumpkin cotyledons: the absence of aconitase in glyoxysomes. Physiol Plant 90:757–762

    Google Scholar 

  • Bernard DG, Cheng Y, Zhao Y, Balk J (2009) An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiol 151:590–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrari F, Nunes-Nesi A, Gibon Y, Lytovchenko A, Loureiro ME, Fernie AR (2003) Reduced expression of aconitase results in an enhanced rate of photosynthesis and marked shifts in carbon partitioning in illuminated leaves of wild species tomato. Plant Physiol 133:1322–1335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Courtois-Verniquet F, Douce R (1993) Lack of aconitase in glyoxysomes and peroxisomes. Biochem J 294:103–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dupuy J, Volbeda A, Carpentier P, Darnault C, Moulis JM, Fontecilla-Camps JC (2006) Crystal structure of human iron regulatory protein 1 as cytosolic aconitase. Structure 14:129–139

    CAS  PubMed  Google Scholar 

  • Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eanes RZ, Kun E (1971) Separation and characterization of aconitate hydratase isoenzymes from pig tissues. Biochim Biophys Acta 227:204–210

    CAS  PubMed  Google Scholar 

  • Grillet L, Lan P, Li W, Mokkapati G, Schmidt W (2018) IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nat Plants 4:953–963

    CAS  PubMed  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hentze MW, Kühn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93:8175–8182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    CAS  PubMed  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hindt MN, Guerinot ML (2012) Getting a sense for signals: regulation of the plant iron deficiency response. Biochim Biophys Acta 1823:1521–1530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hindt MN, Akmakjian GZ, Pivarski KL, Punshon T, Baxter I, Salt DE, Guerinot ML (2017) BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana. Metallomics 9:876–890

    CAS  PubMed  Google Scholar 

  • Hirayama T, Lei GJ, Yamaji N, Nakagawa N, Ma JF (2018) The putative peptide gene FEP1 regulates iron deficiency response in Arabidopsis. Plant Cell Physiol 59:1739–1752

    CAS  PubMed  Google Scholar 

  • Huang S, Taylor NL, Narsai R, Eubel H, Whelan J, Millar AH (2009) Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity. Plant Physiol 149:719–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381

    CAS  PubMed  Google Scholar 

  • Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) A rice FRD3-like (OsFRDL1) gene is expressed in the cells involved in long-distance transport. Soil Sci Plant Nutr 50:1133–1140

    CAS  Google Scholar 

  • Inoue H, Takahashi M, Kobayashi T, Suzuki M, Nakanishi H, Mori S, Nishizawa NK (2008) Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol 66:193–203

    CAS  PubMed  Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470–3479

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Bashir K, Fujimoto M, An G, Itai RN, Tsutsumi N, Nakanishi H, Nishizawa NK (2009) Rice-specific mitochondrial iron-regulated gene (MIR) plays an important role in iron homeostasis. Mol Plant 2:1059–1066

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for long distance transport of iron and manganese. Plant J 62:379–390

    CAS  PubMed  Google Scholar 

  • Itai RN, Ogo Y, Kobayashi T, Nakanishi H, Nishizawa NK (2013) Rice genes involved in phytosiderophore biosynthesis are synchronously regulated during the early stages of iron deficiency in roots. Rice 6:16

    PubMed  PubMed Central  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    CAS  PubMed  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAYTM vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    CAS  PubMed  Google Scholar 

  • Kennedy MC, Mende-Mueller L, Blondin GA, Beinert H (1992) Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein. Proc Natl Acad Sci USA 89:11730–11734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klausner RD, Rouault TA, Harford JB (1993) Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72:19–28

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Yoshihara T, Jiang T, Goto F, Nakanishi H, Mori S, Nishizawa NK (2003) Combined deficiency of iron and other divalent cations mitigates the symptoms of iron deficiency in tobacco plants. Physiol Plant 119:400–408

    CAS  Google Scholar 

  • Kobayashi T, Suzuki M, Inoue H, Itai RN, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot 56:1305–1316

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Ogo Y, Itai RN, Nakanishi H, Takahashi M, Mori S, Nishizawa NK (2007) The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proc Natl Acad Sci USA 104:19150–19155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Ogo Y, Aung MS, Nozoye T, Itai RN, Nakanishi H, Yamakawa T, Nishizawa NK (2010) The spatial expression and regulation of transcription factors IDEF1 and IDEF2. Ann Bot 105:1109–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Itai RN, Aung MS, Senoura T, Nakanishi H, Nishizawa NK (2012) The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status. Plant J 69:81–91

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK (2013) Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Commun 4:2792

    PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2014) Iron sensors and signals in response to iron deficiency. Plant Sci 224:36–43

    CAS  PubMed  Google Scholar 

  • Kobayashi T (2019) Understanding the complexity of iron sensing and signaling cascades in plants. Plant Cell Physiol 60:1440–1446

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Nozoye T, Nishizawa NK (2019a) Iron transport and its regulation in plants. Free Radic Biol Med 133:11–20

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Ozu A, Kobayashi S, An G, Jeon JS, Nishizawa NK (2019b) OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice. Plant Mol Biol 101:471–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424

    CAS  PubMed  Google Scholar 

  • Kourmpetis YA, Van Dijk AD, Bink MC, Van Ham RC, TerBraak CJ (2010) Bayesian markov random field analysis for protein function prediction based on network data. PLoS ONE 5:e9293

    PubMed  PubMed Central  Google Scholar 

  • Kunze M, Pracharoenwattana I, Smith SM, Hartig A (2006) A central role for the peroxisomal membrane in glyoxylate cycle function. Biochim Biophys Acta 1763:1441–1452

    CAS  PubMed  Google Scholar 

  • Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150:786–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang G, Zhang H, Li Y, Pu M, Yang Y, Li C, Lu C, Xu P, Yu D (2020) Oryza sativa FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (OsFIT/OsbHLH156) interacts with OsIRO2 to regulate iron homeostasis. J Integ Plant Biol. https://doi.org/10.1111/jipb.12933

    Article  Google Scholar 

  • Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Mühlenhoff U (2012) The role of mitochondria in cellular iron–sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823:1491–1508

    CAS  PubMed  Google Scholar 

  • Ma J, Haldar S, Khan MA, Sharma SD, Merrick WC, Theil EC, Goss DJ (2012) Fe2+ binds iron responsive element-RNA, selectively changing protein-binding affinities and regulating mRNA repression and activation. Proc Natl Acad Sci USA 109:8417–8422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Mendoza-Cózatl DG, Xie Q, Akmakjian GZ, Jobe TO, Patel A, Stacey MG, Song L, Demoin DW, Jurisson SS, Stacey G, Schroeder JI (2014) OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Mol Plant 7:1455–1469

    PubMed  PubMed Central  Google Scholar 

  • Moeder W, del Pozo O, Navarre DA, Martin GB, Klessig DF (2007) Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana. Plant Mol Biol 63:273–287

    CAS  PubMed  Google Scholar 

  • Moroishi T, Nishiyama M, Takeda Y, Iwai K, Nakayama KI (2011) The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo. Cell Metab 14:339–351

    CAS  PubMed  Google Scholar 

  • Nishitani Y, Okutani H, Takeda Y, Uchida T, Iwai K, Ishimori K (2019) Specific heme binding to heme regulatory motifs in iron regulatory proteins and its functional significance. J Inorg Biochem 198:110726

    CAS  PubMed  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454

    CAS  PubMed  Google Scholar 

  • Nozoye T, Nakanishi H, Nishizawa NK (2013) Characterizing the crucial components of iron homeostasis in the maize mutants ys1 and ys3. PLoS ONE 8:e62567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2015) The phytosiderophore efflux transporter TOM2 is involved in metal transport in rice. J Biol Chem 290:27688–27699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nozoye T, von Wirén N, Sato Y, Higashiyama T, Nakanishi H, Nishizawa NK (2019) Characterization of the nicotianamine exporter ENA1 in rice. Front Plant Sci 10:502

    PubMed  PubMed Central  Google Scholar 

  • Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57:2867–2878

    CAS  PubMed  Google Scholar 

  • Ogo Y, Itai RN, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa NK (2007) The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J 51:366–377

    CAS  PubMed  Google Scholar 

  • Ogo Y, Kobayashi T, Itai RN, Nakanishi H, Kakei Y, Takahashi M, Toki S, Mori S, Nishizawa NK (2008) A novel NAC transcription factor IDEF2 that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem 283:13407–13417

    CAS  PubMed  Google Scholar 

  • Ogura M, Endo R, Ishikawa H, Takeda Y, Uchida T, Iwai K, Kobayashi K, Ishimori K (2018) Redox-dependent axial ligand replacement and its functional significance in heme-bound iron regulatory proteins. J Inorg Biochem 182:238–248

    CAS  PubMed  Google Scholar 

  • Peyret P, Perez P, Alric M (1995) Structure, genomic organization, and expression of the Arabidopsis thaliana aconitase gene. Plant aconitase show significant homology with mammalian iron-responsive element-binding protein. J Biol Chem 270:8131–8137

    CAS  PubMed  Google Scholar 

  • Philpott CC, Klausner RD, Rouault TA (1994) The bifunctional iron-responsive element binding protein/cytosolic aconitase: the role of active-site residues in ligand binding and regulation. Proc Natl Acad Sci USA 91:7321–7325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rey P, Taupin-Broggini M, Couturier J, Vignols F, Rouhier N (2019) Is there a role for glutaredoxins and BOLAs in the perception of the cellular iron status in plants? Front Plant Sci 10:712

    PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Celma J, Chou H, Kobayashi T, Long TA, Balk J (2019a) Hemerythrin E3 ubiquitin ligases as negative regulators of iron homeostasis in plants. Front Plant Sci 10:98

    PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Celma J, Connorton JM, Kruse I, Green RT, Franceschetti M, Chen YT, Cui Y, Ling HQ, Yeh KC, Balk J (2019b) Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling. Proc Natl Acad Sci 116:17584–17591

    PubMed  PubMed Central  Google Scholar 

  • Rouault TA (2009) An ancient gauge for iron. Science 326:676–677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salahudeen AA, Thompson JW, Ruiz JC, Ma HW, Kinch LN, Li Q, Grishin NV, Bruick RK (2009) An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 326:722–726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Antonio BA, Namiki N, Takehisa H, Minami H, Kamatsuki K, Sugimoto K, Shimizu Y, Hirochika H, Nagamura Y (2011) RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nuc Acids Res 39:D1141–1148

    CAS  Google Scholar 

  • Sato Y, Takehisa H, Kamatsuki K, Minami H, Namiki N, Ikawa H, Ohyanagi H, Sugimoto K, Antonio B, Nagamura Y (2013) RiceXPro Version 3.0: expanding the informatics resource for rice transcriptome. Nuc Acids Res 41:D1206–D1213

    CAS  Google Scholar 

  • Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA (2015) Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. Plant Physiol 167:273–286

    CAS  PubMed  Google Scholar 

  • Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G (2008) The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol 146:589–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol 121:947–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urzica EI, Casero D, Yamasaki H, Hsieh SI, Adler LN, Karpowicz SJ, Blaby-Haas CE, Clarke SG, Loo JA, Pellegrini M, Merchant SS (2012) Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. Plant Cell 24:3921–3948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vashisht AA, Zumbrennen KB, Huang X, Powers DN, Durazo A, Sun D, Bhaskaran N, Persson A, Uhlen M, Sangfelt O, Spruck C, Leibold EA, Wohlschlegel JA (2009) Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 326:718–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vigani G, Pii Y, Celletti S, Maver M, Mimmo T, Cesco S, Astolfi S (2018) Mitochondria dysfunctions under Fe and S deficiency: is citric acid involved in the regulation of adaptive responses? Plant Physiol Biochem 126:86–96

    CAS  PubMed  Google Scholar 

  • Wallace A, Lunt OR (1960) Iron chlorosis in horticultural plants, a review. Proc Am Soc Hort Sci 75:819–840

    CAS  Google Scholar 

  • Walden WE, Selezneva AI, Dupuy J, Volbeda A, Fontecilla-Camps JC, Theil EC, Volz K (2006) Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science 314:1903–1908

    CAS  PubMed  Google Scholar 

  • Walden WE, Selezneva A, Volz K (2012) Accommodating variety in iron-responsive elements: Crystal structure of transferrin receptor 1 B IRE bound to iron regulatory protein 1. FEBS Lett 586:32–35

    CAS  PubMed  Google Scholar 

  • Wallander ML, Leibold EA, Eisenstein RS (2006) Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim Biophys Acta 1763:668–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Itai RN, Nozoye T, Kobayashi T, Nishizawa NK, Nakanishi H (2020a) The bHLH protein OsIRO3 is critical for plant survival and iron (Fe) homeostasis in rice (Oryza sativa L.) under Fe-deficient conditions. Soil Sci Plant Nutr in press. https://doi.org/10.1080/00380768.2020.1783966

    Article  Google Scholar 

  • Wang S, Li L, Ying Y, Wang J, Shao JF, Yamaji N, Whelan J, Ma JF, Shou H (2020b) A transcription factor OsbHLH156 regulates strategy II iron acquisition through localizing IRO2 to the nucleus in rice. New Phytol 225:1247–1260

    CAS  PubMed  Google Scholar 

  • Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149:297–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokosho K, Yamaji N, Ma JF (2016) OsFRDL1 expressed in nodes is required for distribution of iron to grains in rice. J Exp Bot 67:5485–5494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai Z, Gayomba SR, Jung HI, Vimalakumari NK, Piñeros M, Craft E, Rutzke MA, Danku J, Lahner B, Punshon T, Guerinot ML, Salt DE, Kochian LV, Vatamaniuk OK (2014) OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. Plant Cell 26:2249–2264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xu YH, Yi HY, Gong JM (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410

    CAS  PubMed  Google Scholar 

  • Zhang H, Li Y, Yao X, Liang G, Yu D (2017) POSITIVE REGULATOR OF IRON HOMEOSTASIS1, OsPRI1, facilitates iron homeostasis. Plant Physiol 175:543–554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Li Y, Pu M, Xu P, Liang G, Yu D (2020) Oryza sativa POSITIVE REGULATOR OF IRON DEFICIENCY RESPONSE 2 (OsPRI2) and OsPRI3 are involved in the maintenance of Fe homeostasis. Plant Cell Environ 43:261–274

    CAS  PubMed  Google Scholar 

  • Zheng L, Ying Y, Wang L, Wang F, Whelan J, Shou H (2010) Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa. BMC Plant Biol 10:166

    PubMed  PubMed Central  Google Scholar 

  • Zuchi S, Watanabe M, Hubberten HM, Bromke M, Osorio S, Fernie AR, Celletti S, Paolacci AR, Catarcione G, Ciaffi M, Hoefgen R, Astolfi S (2015) The interplay between sulfur and iron nutrition in tomato. Plant Physiol 169:2624–2639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo J, Wu Z, Li Y, Shen Z, Feng X, Zhang M, Ye H (2017) Mitochondrial ABC transporter ATM3 is essential for cytosolic iron-sulfur cluster assembly. Plant Physiol 173:2096–2109

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yoshiaki Nagamura and Ms. Rituko Motoyama (National Institute of Agrobiological Sciences, Japan) for the rice microarray analysis, Ms. Akane Konishi, Ms. May Linn Aung, Ms. Hiroko Hori, and Ms. Mariko Sakashita (Ishikawa Prefectural University, Japan) for assistance with the rice culture and analysis. This research was supported by Advanced Low Carbon Technology Research and Development Program (ALCA) from Japan Science and Technology Agency (JST) (to N. K. N), and the Japan Society for the Promotion of Sciences (JSPS) KAKENHI Grant Numbers 16H04891 (to N. K. N) and 18H02115 (to T. K.).

Author information

Authors and Affiliations

Authors

Contributions

TS designed the research, carried out most of the experiments, and wrote the manuscript with discussion from all the co-authors. TK carried out data analysis and manuscript revision. GA provided the aco1(+ /−) T-DNA lines. HN and NKN supervised the research.

Corresponding authors

Correspondence to Takanori Kobayashi or Naoko K. Nishizawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 751 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senoura, T., Kobayashi, T., An, G. et al. Defects in the rice aconitase-encoding OsACO1 gene alter iron homeostasis. Plant Mol Biol 104, 629–645 (2020). https://doi.org/10.1007/s11103-020-01065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-01065-0

Keywords

Navigation