Skip to main content
Log in

General Regularities and Differences in the Behavior of the Dynamic Magnetization Switching of Ferrimagnetic (CoFe2O4) and Antiferromagnetic (NiO) Nanoparticles

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In antiferromagnetic (AFM) nanoparticles, an additional ferromagnetic phase forms and leads to the appearance in AFM nanoparticles of a noncompensated magnetic moment and the magnetic properties typical of common FM nanoparticles. In this work, to reveal the regularities and differences of the dynamic magnetization switching in FM and AFM nanoparticles, the typical representatives of such materials are studied: CoFe2O4 and NiO nanoparticles with average sizes 6 and 8 nm, respectively. The high fields of the irreversible behavior of the magnetizations of these samples determine the necessity of using strong pulsed fields (amplitude to 130 kOe) to eliminate the effect of the partial hysteresis loop when studying the dynamic magnetic hysteresis. For both types of the samples, coercive force HC at the dynamic magnetization switching is markedly higher than HC at quasi-static conditions. HC increases as the pulse duration τP decreases and the maximum applied field H0 increases. The dependence of HC on field variation rate dH/dt = H0/2τP is a unambiguous function for CoFe2O4 nanoparticles, and it is precisely such a behavior is expected from a system of single-domain FM nanoparticles. At the same time, for AFM NiO nanoparticles, the coercive force is no longer an unambiguous function of dH/dt, and the value of applied field H0 influences more substantially. Such a difference in the behaviors of FM and AFM nanoparticles is caused by the interaction of the FM subsystem and the AFM “core” inside AFM nanoparticles. This circumstance should be taken into account when developing the theory of dynamic hysteresis of the AFM nanoparticles and also to take into account their practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Nadeem, H. Krenn, T. Traussnig, R. Würschum, D. V. Szabo, and I. Letofsky-Papst, J. Appl. Phys. 111, 113911 (2012).

    ADS  Google Scholar 

  2. S. S. Yakushkin, A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, G. A. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 111, 044312 (2012).

    ADS  Google Scholar 

  3. A. S. Kamzin, A. A. Valiullin, V. G. Semenov, H. Das, and N. Wakiya, Phys. Solid State 61, 1113 (2019).

    ADS  Google Scholar 

  4. M. Tadic, D. Nikolic, M. Panjan, and G. R. Blake, J. Alloys Compd. 647, 1061 (2015).

    Google Scholar 

  5. S. V. Stolyar, D. A. Balaev, V. P. Ladygina, A. I. Pankrats, R. N. Yaroslavtsev, D. A. Velikanov, and R. S. Iskhakov, JETP Lett. 111, 183 (2020).

    ADS  Google Scholar 

  6. R. H. Kodama and A. E. Berkowitz, Phys. Rev. B 59, 6321 (1999).

    ADS  Google Scholar 

  7. A. P. Safronov, I. V. Beketov, S. V. Komogortsev, G. V. Kurlyandskaya, A. I. Medvedev, D. V. Leiman, A. Larranaga, and S. M. Bhagat, AIP Adv. 3, 052135 (2013).

    ADS  Google Scholar 

  8. L. Neel, C. R. Acad. Sci. Paris 252, 4075 (1961).

    Google Scholar 

  9. Yu. L. Raikher and V. I. Stepanov, J. Exp. Theor. Phys. 107, 435 (2008).

    ADS  Google Scholar 

  10. A. A. Lepeshev, I. V. Karpov, A. V. Ushakov, D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, D. A. Velikanov, and M. I. Petrov, J. Supercond. Nov. Magn. 30, 931 (2017).

    Google Scholar 

  11. S. A. Makhlouf, F. T. Parker, F. E. Spada, and A. E. Berkowitz, J. Appl. Phys. 81, 5561 (1997).

    ADS  Google Scholar 

  12. S. I. Popkov, A. A. Krasikov, A. A. Dubrovskiy, M. N. Volochaev, V. L. Kirillov, O. N. Martyanov, and D. A. Balaev, J. Appl. Phys. 126, 103904 (2019).

    ADS  Google Scholar 

  13. D. A. Balaev, A. A. Dubrovskiy, A. A. Krasikov, S. I. Popkov, A. D. Balaev, K. A. Shaikhutdinov, V. L. Kirillov, and O. N. Mart’yanov, Phys. Solid State 59, 1547 (2017).

    ADS  Google Scholar 

  14. S. A. Makhlouf, H. Al-Attar, and R. H. Kodama, Solid State Commun. 145, 1 (2008).

    ADS  Google Scholar 

  15. M. S. Seehra and A. Punnoose, Solid State Commun. 128, 299 (2003).

    ADS  Google Scholar 

  16. D. A. Balaev, A. A. Krasikov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, R. N. Yaroslavtsev, O. A. Bayukov, A. M. Vorotynov, M. N. Volochaev, and A. A. Dubrovskiy, Phys. Solid State 58, 1782 (2016).

    ADS  Google Scholar 

  17. I. S. Poperechny, Yu. L. Raikher, and V. I. Stepanov, Phys. Rev. B 82, 174423 (2010).

    ADS  Google Scholar 

  18. S. Poperechny and Yu. L. Raikher, Phys. B (Amsterdam, Neth.) 435, 58 (2014).

  19. Y. P. Kalmykov, S. V. Titov, W. T. Coffey, M. Zarifakis, and W. J. Dowlin, Phys. Rev. B 99, 184414 (2019).

    ADS  Google Scholar 

  20. E. L. Verde, G. T. Landi, J. A. Gomes, M. H. Sousa, and A. F. Bakuzis, J. Appl. Phys. 111, 123902 (2012).

    ADS  Google Scholar 

  21. Y. Lv, Y. Yang, J. Fang, H. Zhang, E. Peng, X. Liu, W. Xiao, and J. Ding, RSC Adv. 5, 76764 (2015).

  22. E. Garaio, O. Sandre, J.-M. Collantes, J. A. Garcia, S. Mornet, and F. Plazaola, Nanotechnology 26, 015704 (2015).

    ADS  Google Scholar 

  23. A. S. Kazmin, I. M. Obaidat, A. A. Valliulin, V. G. Semenov, I. A. Al-Omari, and C. Nayek, Tech. Phys. Lett. 45, 426 (2019).

    ADS  Google Scholar 

  24. N. A. Usov and Yu. B. Grebenshchikov, J. Appl. Phys. 106, 023917 (2009).

    ADS  Google Scholar 

  25. J. Carrey, B. Mehdaoui, and M. Respaud, J. Appl. Phys. 109, 083921 (2011).

    ADS  Google Scholar 

  26. A. M. Shutyi and D. I. Sementsov, Phys. Solid State 61, 1736 (2019).

    ADS  Google Scholar 

  27. A. M. Shutyi and D. I. Sementsov, J. Exp. Theor. Phys. 129, 248 (2019).

    ADS  Google Scholar 

  28. B. Ouari, S. Aktaou, and Y. P. Kalmykov, Phys. Rev. B 81, 024412 (2010).

    ADS  Google Scholar 

  29. B. Ouari and Y. P. Kalmykov, Phys. Rev. B 83, 064406 (2011).

    ADS  Google Scholar 

  30. A. S. Kamzin, A. A. Valiullin, H. Khurshid, Z. Nemati, H. Srikanth, and M. H. Phan, Phys. Solid State 60, 382 (2018).

    ADS  Google Scholar 

  31. A. S. Kamzin, D. S. Nikam, and S. H. Pawar, Phys. Solid State 59, 156 (2017).

    ADS  Google Scholar 

  32. C. Caizer and I. Hrianca, Eur. Phys. J. B 31, 391 (2003).

    ADS  Google Scholar 

  33. D. A. Balaev, I. S. Poperechny, A. A. Krasikov, K. A. Shaikhutdinov, A. A. Dubrovskiy, S. I. Popkov, A. D. Balaev, S. S. Yakushkin, G. A. Bukhtiyarova, O. N. Martyanov, and Yu. L. Raikher, J. Appl. Phys. 117, 063908 (2015).

    ADS  Google Scholar 

  34. S. I. Popkov, A. A. Krasikov, S. V. Semenov, A. A. Dubrovskii, S. S. Yakushkin, V. L. Kirillov, O. N. Mart’yanov, and D. A. Balaev, Phys. Solid State 62, 445 (2020).

    ADS  Google Scholar 

  35. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskii, A. D. Balaev, S. I. Popkov, V. L. Kirillov, and O. N. Martyanov, J. Supercond. Nov. Magn. 32, 405 (2019).

    Google Scholar 

  36. D. A. Balaev, S. V. Semenov, A. A. Dubrovskii, A. A. Krasikov, S. I. Popkov, S. S. Yakushkin, V. L. Kirillov, and O. N. Mart’yanov, Phys. Solid State 62, 285 (2020).

    ADS  Google Scholar 

  37. A. A. Bykov, S. I. Popkov, A. M. Parshin, and A. A. Krasikov, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 9, 111 (2015).

    Google Scholar 

  38. G. Baldi, D. Bonacchi, C. Innocenti, G. Lorenzi, and C. Sangregorio, J. Magn. Magn. Mater. 311, 10 (2007).

    ADS  Google Scholar 

  39. A. McDannald, M. Staruch, and M. Jai, J. Appl. Phys. 112, 123916 (2012).

    ADS  Google Scholar 

  40. S. Baran, A. Hoser, B. Penc, and A. Szytula, Acta Polon. A 129, 35 (2016).

    Google Scholar 

  41. N. Rinaldi-Montes, P. Gorria, D. Martínez-Blanco, A. B. Fuertes, L. Fernández Barquín, I. Puente-Orench, and J. A. Blanco, Nanotechnology 26, 305705 (2015).

    Google Scholar 

  42. N. J. O. Silva, V. S. Amaral, A. Urtizberea, R. Bustamante, A. Millán, F. Palacio, E. Kampert, U. Zeitler, S. de Brion, O. Iglesias, and A. Labarta, Phys. Rev. B 84, 104427 (2011).

    ADS  Google Scholar 

  43. N. J. O. Silva, A. Millan, F. Palacio, E. Kampert, U. Zeitler, and V. S. Amaral, Phys. Rev. B 79, 104405 (2009).

    ADS  Google Scholar 

  44. S. I. Popkov, A. A. Krasikov, D. A. Velikanov, V. L. Kirillov, O. N. Martyanov, and D. A. Balaev, J. Magn. Magn. Mater. 483, 21 (2019).

    ADS  Google Scholar 

  45. D. A. Balaev, A. A. Krasikov, D. A. Velikanov, S. I. Popkov, N. V. Dubynin, S. V. Stolyar, V. P. Ladygina, and R. N. Yaroslavtsev, Phys. Solid State 60, 1973 (2018).

    ADS  Google Scholar 

  46. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, S. I. Popkov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, J. Appl. Phys. 120, 183903 (2016).

    ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk region, and the Krasnoyarsk Regional Foundation for Science, project no. 18-42-240012: “Magnetization switching of magnetic nanoparticles in strong pulsed magnetic fields is a new approach to studying the dynamic effects related to the processes of magnetization of magnetic nanoparticles.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Popkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popkov, S.I., Krasikov, A.A., Semenov, S.V. et al. General Regularities and Differences in the Behavior of the Dynamic Magnetization Switching of Ferrimagnetic (CoFe2O4) and Antiferromagnetic (NiO) Nanoparticles. Phys. Solid State 62, 1518–1524 (2020). https://doi.org/10.1134/S1063783420090255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420090255

Keywords:

Navigation