Skip to main content
Log in

Spin–Orbit Coupling-Induced Effective Interactions in Superconducting Nanowires in the Strong Correlation Regime

  • SUPERCONDUCTIVITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In the second order of the operator form of the perturbation theory, the effective interactions in a superconducting nanowire have been obtained at the strong electron correlations, when the spin–orbit coupling parameter is comparable with the hopping integral. Using the exact diagonalization technique, in short nanowires with the open boundary conditions at the strong Coulomb repulsion, the excitations corresponding to the Majorana edge states with the energy below the value of a bulk superconducting gap have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. Zhang, C.-X. Liu, S. Gazibegovic, D. Xu, J. A. Logan, G. Wang, N. van Loo, J. D. Bommer, M. W. de Moor, D. Car, R. L. M. O. het Veld, P. J. van Veldhoven, S. Koelling, M. A. Verheijen, M. Pendharkar, et al., Nature (London, U.K.) 556, 74 (2018).

    Article  ADS  Google Scholar 

  2. R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).

    Article  ADS  Google Scholar 

  3. Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).

    Article  ADS  Google Scholar 

  4. V. V. Val’kov, V. A. Mitskan, and M. S. Shustin, J. Exp. Theor. Phys. 129, 426 (2019).

    Article  ADS  Google Scholar 

  5. A. Y. Kitaev, Ann. Phys. 303, 2 (2003).

    Article  ADS  Google Scholar 

  6. D. I. Pikulin, J. P. Dahlhaus, M. Wimmer, H. Schomerus, and C. W. J. Beenakker, New J. Phys. 14, 125011 (2012).

    Article  ADS  Google Scholar 

  7. J. Chen, B. D. Woods, P. Yu, M. Hocevar, D. Car, S. R. Plissard, E. P. A. M. Bakkers, T. D. Stanescu, and S. M. Frolov, Phys. Rev. Lett. 123, 107703 (2019).

    Article  ADS  Google Scholar 

  8. H. Pan, W. S. Cole, J. D. Sau, and S. Das Sarma, Phys. Rev. B 101, 024506 (2020).

    Article  ADS  Google Scholar 

  9. C.-X. Liu, J. D. Sau, T. D. Stanescu, and S. D. Sarma, Phys. Rev. B 96, 075161 (2017).

    Article  ADS  Google Scholar 

  10. C. Moore, T. Stanescu, and S. Tewari, Phys. Rev. B 97, 165302 (2018).

    Article  ADS  Google Scholar 

  11. V. V. Val’kov, M. Y. Kagan, and S. V. Aksenov, J. Phys.: Condens. Matter 31, 225301 (2019).

    ADS  Google Scholar 

  12. Y. Sato, S. Matsuo, C.-H. Hsu, P. Stano, K. Ueda, Y. Takeshige, H. Kamata, J. S. Lee, B. Shojaei, K. Wickramasinghe, J. Shabani, Ch. Palmstrom, Y. Tokura, D. Loss, and S. Tarucha, Phys. Rev. B 99, 155304 (2019).

    Article  ADS  Google Scholar 

  13. R. M. Lutchyn and M. P. A. Fisher, Phys. Rev. B 84, 214528 (2011).

    Article  ADS  Google Scholar 

  14. E. Stoudenmire, J. Alicea, O. Starykh, and M. Fisher, Phys. Rev. B 84, 014503 (2011).

    Article  ADS  Google Scholar 

  15. S. Gangadharaiah, B. Braunecker, P. Simon, and D. Loss, Phys. Rev. Lett. 107, 036801 (2011).

    Article  ADS  Google Scholar 

  16. C. Wong and K. Law, Phys. Rev. B 86, 184516 (2012).

    Article  ADS  Google Scholar 

  17. A. M. Martin and J. F. Annett, Phys. Rev. B 57, 8709 (1998).

    Article  ADS  Google Scholar 

  18. S. V. Aksenov, A. O. Zlotnikov, and M. S. Shustin, Phys. Rev. B 101, 125431 (2020).

    Article  ADS  Google Scholar 

  19. Yu. A. Izyumov, Phys. Usp. 40, 445 (1997).

    Article  ADS  Google Scholar 

  20. N. N. Bogolyubov, Collection of Scientific Works (Nauka, Moscow, 2006), Vol. 6 [in Russian].

    Google Scholar 

  21. K. A. Chao, J. Spalek, and A. M. Oles, J. Phys. C 10, L271 (1977).

    Article  ADS  Google Scholar 

  22. V. V. Val’kov, T. A. Val’kova, D. M. Dzebisashvili, and S. G. Ovchinnikov, JETP Lett. 75, 378 (2002).

    Article  ADS  Google Scholar 

  23. A. Yu. Kitaev, Phys. Usp. Suppl. 44, 131 (2001).

    Article  ADS  Google Scholar 

  24. A. D. Fedoseev, J. Exp. Theor. Phys. 128, 125 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, projects nos. 19-02-00348 and 20-3270059, the Government of the Krasnoyarsk Territory and the Krasnoyarsk Territorial Foundation for Support of Scientific and R&D Activity, projects nos. 19-42-240011 and 18-42-240014 “Single-Orbit Effective Model of an Ensemble of Spin-Polaron Quasiparticles in the Problem of Describing the Intermediate State and Pseudogap Behavior of Cuprate Superconductors,” and the Presidium of the Russian Academy of Sciences, program I.12 “Fundamental Problems of High-Temperature Superconductivity.” S.V.A. thanks the Council for Grants of the President of the Russian Federation for Governmental Support of Young Russian Scientists, project no. MK-1641.2020.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Zlotnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zlotnikov, A.O., Aksenov, S.V. & Shustin, M.S. Spin–Orbit Coupling-Induced Effective Interactions in Superconducting Nanowires in the Strong Correlation Regime. Phys. Solid State 62, 1612–1618 (2020). https://doi.org/10.1134/S1063783420090371

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420090371

Keywords:

Navigation