Skip to main content
Log in

Control of Superconducting Transitions in Nanowires Using Galvanically Uncoupled Gates for Designing Superconductor-Based Electronic Devices

  • SUPERCONDUCTIVITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A possibility of contactless switching of an NbN nanowire from superconducting to normal state by passing a current through a gate located at a certain distance from the nanowire is demonstrated. The gate, being isolated from the nanowire by an Al2O3 layer, contains an integrated resistance formed by ion irradiation. Dependences of the minimum power released in the gate that is sufficient for nanowire to pass to the normal state on the dc current through the nanowire are experimentally obtained. A signal inverter containing three successive cascades is developed based on this principle. This design shows that the proposed approach can be used to form a logic element base for cryogenic computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. S. Holmes, A. L. Ripple, and M. A. Manheimer, IEEE Trans. Appl. Supercond. 23, 1701610 (2013).

    Article  ADS  Google Scholar 

  2. F. Balestra, Y. Hayashi, and T. Contre-vice-chair, The International Roadmap for Devices and Systems (IEEE, 2018).

  3. K. K. Likharev and V. K. Semenov, IEEE Trans. Appl. Supercond. 1, 3 (1991).

    Article  ADS  Google Scholar 

  4. N. Takagi, Phys. C (Amsterdam, Neth.) 484, 213 (2013).

  5. A. N. McCaughan and K. K. Berggren, Nano Lett. 14, 5748 (2014).

    Article  ADS  Google Scholar 

  6. W. Chen, A. V. Rylyakov, Vijay Patel, J. E. Lukens, and K. K. Likharev, IEEE Trans. Appl. Supercond. 9, 3212 (1999).

    Article  ADS  Google Scholar 

  7. Technical Data on IBM Power 9 Chip. http://en.wikichip.org/wiki/ibm/power/02cy296.

  8. B. A. Gurovich, K. E. Prikhod’ko, A. G. Domantovskii, V. L. Stolyarov, D. A. Komarov, E. A. Kuleshova, and L. V. Kutuzov, RF Patent No. 2674063, Byull. Izobret., No. 34 (2018).

  9. A. D. Semenov, G. N. Gol’tsman, and A. A. Korneev, Phys. C (Amsterdam, Neth.) 351, 349 (2001).

  10. G. Goltsman, A. Korneev, V. Izbenko, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, A. Verevkin, J. Zhang, A. Pearlman, W. Slysz, and R. Sobolewski, Nucl. Instrum. Methods Phys. Res., Sect. A 520, 527 (2004).

    Google Scholar 

  11. L. Jiang, J. Li, W. Zhang, Q. J. Yao, Z. L. Lin, S. C. Shi, Y. B. Vachtomin, S. V. Antipov, S. I. Svechnikov, B. M. Voronov, and G. N. Goltsman, IEEE Trans. -Appl. Supercond. 15, 511 (2005).

    Article  ADS  Google Scholar 

  12. B. S. Karasik, A. V. Sergeev, and D. E. Prober, IEEE Trans. Terahertz Sci. Technol. 1, 97 (2011).

    Article  ADS  Google Scholar 

  13. J. Clarke, Proc. IEEE 77, 1208 (1989).

    Article  ADS  Google Scholar 

  14. B. A. Gurovich and K. E. Prikhod’ko, Phys. Usp. 52, 165 (2009).

    Article  ADS  Google Scholar 

  15. B. A. Gurovich, K. E. Prikhod’ko, E. A. Kuleshova, K. I. Maslakov, and D. A. Komarov, J. Exp. Theor. Phys. 116, 916 (2013).

    Article  ADS  Google Scholar 

  16. B. A. Gurovich, M. A. Tarkhov, K. E. Prikhod’ko, E. A. Kuleshova, D. A. Komarov, V. L. Stolyarov, E. D. Ol’shanskii, B. V. Goncharov, D. A. Goncharova, L. V. Kutuzov, and A. G. Domantovskii, Nanotechnol. Russ. 9, 386 (2014).

    Article  Google Scholar 

  17. M. M. Dement’eva, K. E. Prikhod’ko, B. A. Gurovich, L. V. Kutuzov, and D. A. Komarov, Phys. Solid State 58, 2177 (2016).

    Article  ADS  Google Scholar 

  18. V. V. Schmidt, The Physics of Superconductors. Introduction to Fundamentals and Applications (MTsNMO, Moscow, 2000; Springer, Berlin, 1997).

  19. W. J. Skocpol, M. R. Beasley, and M. Tinkham, J. A-ppl. Phys. 45, 4054 (1974).

    Article  ADS  Google Scholar 

  20. B. I. Ivlev and N. B. Kopnin, Sov. Phys. Usp. 27, 206 (1984).

    Article  ADS  Google Scholar 

  21. W. W. Webb and R. J. Warburton, Phys. Rev. Lett. 20, 461 (1968).

    Article  ADS  Google Scholar 

  22. K. Harrabi, A. Mekki, S. Kunwar, and J. P. Maneval, J. Appl. Phys. 123, 083901 (2018).

    Article  ADS  Google Scholar 

  23. B. A. Gurovich, K. E. Prikhod’ko, M. A. Tarkhov, E. A. Kuleshova, D. A. Komarov, V. L. Stolyarov, E. D. Ol’shanskii, B. V. Goncharov, D. A. Goncharova, L. V. Kutuzov, A. G. Domantovskii, Z. V. Lavrukhina, and M. M. Dement’eva, Nanotechnol. Russ. 10, 530 (2015).

    Article  Google Scholar 

  24. B. A. Gurovich, K. E. Prikhodko, M. A. Tarkhov, A. G. Domantovsky, D. A. Komarov, B. V. Goncharov, and E. A. Kuleshova, Micro Nanosyst. 7, 172 (2015).

    Article  Google Scholar 

  25. L. M. Johnson, in Proceedings of the 2018 MIT Research and Development Conference,2018. http://ilp.mit.edu/images/conferences/2018/rd/presentations/Johnson.2018.RD.pdf.

Download references

ACKNOWLEDGMENTS

We are grateful to V.L. Stolyarov, E.D. Ol’shanskii, V.N. Mis’ko, A.G. Domantovskii, and E.V. Malieva for the preparation of initial thin niobium nitride films and the help in preparing structures and to D.A. Komarov for carrying out ion irradiation to fabricate integrated resistances.

Funding

This study was supported by the National Research Centre Kurchatov Institute (order no. 1359 on June 25, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Prikhod’ko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurovich, B.A., Prikhod’ko, K.E., Kutuzov, L.V. et al. Control of Superconducting Transitions in Nanowires Using Galvanically Uncoupled Gates for Designing Superconductor-Based Electronic Devices. Phys. Solid State 62, 1585–1591 (2020). https://doi.org/10.1134/S1063783420090103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420090103

Keywords:

Navigation