Skip to main content
Log in

Dirac Neutrinos in the Seesaw Mechanism: Violation of the Number of Dirac Neutrinos

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The seesaw mechanism, which explains the smallness of the neutrino masses by the involvement of high Majorana masses, leads to particles of the same Majorana nature and to a direct violation of the lepton number. A seesaw version entailing the appearance of only Dirac neutrinos subjected to the same kind of violation is proposed. Such a situation seems possible for heavy neutrinos coupled nonperturbatively to the Higgs boson \(H\). It is required for mirror neutrinos in a model that explains the structure of the quark and lepton weak-mixing matrices by the existence of very heavy mirror neutrinos analogous to Standard Model fermions. A nonperturbative character of the problem being discussed prevents the construction of an analytic solution to it, but the conditions deduced for this problem are indicative of a preferable appearance of precisely Dirac neutrinos within this mechanism. The phenomenon under discussion may be of importance for leptogenesis processes if all neutrinos are Dirac particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For Dirac light particles, we have \(A=B\)—see [3], ‘‘corrigenda’’ in Phys. At. Nucl. or arXiv.

REFERENCES

  1. R. N. Mohapatra and A. Yu. Smirnov, hep-ph/0603118; S. F. King et al., arXiv: 1402.4271 [hep-ph]; L. Maiani, arXiv: 1406.5503 [hep-ph].

  2. L. B. Okun, Leptons and Quarks (North-Holland, Amsterdam, 1982, Nauka, Moscow, 1990).

  3. I. T. Dyatlov, Phys. At. Nucl. 78, 485 (2015); arXiv: 1502.01501 [hep-ph].

  4. I. T. Dyatlov, Phys. At. Nucl. 80, 679 (2017); arXiv: 1703.00722 [hep-ph]; Phys. At. Nucl. 82, 144 (2019); arXiv: 1812.02403 [hep-ph].

  5. Particle Data Group (M. Takabashi et al.), Phys. Rev. D 98, 030001 (2018).

    Google Scholar 

  6. I. T. Dyatlov, Phys. At. Nucl. 80, 469 (2017).

    Article  Google Scholar 

  7. V. A. Miransky, Nuovo Cim. A 90, 149 (1985).

    Article  ADS  Google Scholar 

  8. C. N. Leung, S. T. Love, and W. A. Bardeen, Nucl. Phys. B 273, 649 (1986).

    Article  ADS  Google Scholar 

  9. I. T. Dyatlov, Phys. At. Nucl. 81, 236 (2018); arXiv: 1802.00193 [hep-ph].

  10. K. Moffat, S. Pascoli, S. T. Petcov, and J. Turner, arXiv: 1809.08251 [hep-ph]; K. Earl, C. S. Fing, T. Gregoire, and A. Tonato, arXiv: 1903.12192 [hep-ph].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. Dyatlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyatlov, I.T. Dirac Neutrinos in the Seesaw Mechanism: Violation of the Number of Dirac Neutrinos. Phys. Atom. Nuclei 83, 480–487 (2020). https://doi.org/10.1134/S1063778820030059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820030059

Navigation