Skip to main content
Log in

Equivalence transformations and differential invariants of a generalized cubic–quintic nonlinear Schrödinger equation with variable coefficients

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a variable-coefficient cubic–quintic nonlinear Schrödinger equation involving five arbitrary real functions of space and time is analyzed from the point of view of symmetry analysis by using Lie’s invariance infinitesimal criterion. The infinitesimal generators of corresponding equivalence transformations are presented. The first-order differential invariants are constructed to identify when the equation can be mapped to a constant-coefficient cubic–quintic nonlinear Schrödinger equation. The constrained conditions on the variable coefficients we arrived here extend the cases discussed before and present more general results. Some brightlike and darklike solitary wave solutions for special potentials and cubic–quintic nonlinearities are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Article  Google Scholar 

  2. Belmonte-Beitia, J., Pérez-Garcia, V.M., Vekslerchik, V., Torres, P.J.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98, 064102 (2007)

    Article  Google Scholar 

  3. Hao, R.Y., Yang, R.C., Li, L., Zhou, G.S.: Solutions for the propagation of light in nonlinear optical media with spatially inhomogeneous nonlinearities. Opt. Commun. 281, 1256–1262 (2008)

    Article  Google Scholar 

  4. Luo, H.G., Zhao, D., He, X.G.: Exactly controllable transmission of nonautonomous optical solitons. Phys. Rev. A 79, 063802 (2009)

    Article  Google Scholar 

  5. Kundu, A.: Integrable nonautonomous nonlinear Schrödinger equations are equivalent to the standard autonomous equation. Phys. Rev. E 79, 015601(R) (2009)

    Article  MathSciNet  Google Scholar 

  6. Pushkarov, KhI, Pushkarov, D.I., Tomov, I.V.: Self-action of light beams in nonlinear media: soliton solutions. Opt. Quantum Electron. 11, 471–478 (1979)

    Article  Google Scholar 

  7. Pushkarov, K.I., Pushkarov, D.I.: Soliton solutions in some nonlinear Schrödinger-like equations. Rep. Math. Phys. 17, 37–40 (1980)

    Article  MathSciNet  Google Scholar 

  8. Stuart, C.R., Enns, H., Rangnekar, S.S., Sanghera, S.S.: Quasi-soliton and other behaviour of the nonlinear cubic–quintic Schrödinger equation. Can. J. Phys. 64(3), 311–315 (1986)

    Article  Google Scholar 

  9. Pushkarov, D.I., Tanev, S.: Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities. Opt. Commun. 124, 354–364 (1996)

    Article  Google Scholar 

  10. Tanev, S., Pushkarov, D.I.: Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibres and waveguides. Opt. Commun. 141, 322–328 (1997)

    Article  Google Scholar 

  11. Wright, E.M., Lawrence, B.L., Torruellas, W., Stegeman, G.: Stable self-trapping and ring formation in polydiacetylene para-toluene sulfonate. Opt. Lett. 20, 2481–2483 (1995)

    Article  Google Scholar 

  12. Serkin, V.N., Belyaeva, T.L., Alexandrov, I.V., Melchor, G.M.: Novel topological quasi-soliton solutions for the nonlinear cubic–quintic Schrödinger equation model. Proc. SPIE Int. Soc. Opt. Eng. 4271, 292–302 (2001)

    Google Scholar 

  13. Hao, R.Y., Li, L., Li, Z.H., Yang, R.C., Zhou, G.S.: A new way to exact quasi-soliton solutions and soliton interaction for the cubic–quintic nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 245, 383–390 (2005)

    Article  Google Scholar 

  14. Yang, Q., Zhang, J.F.: Optical quasi-soliton solutions for the cubic–quintic nonlinear Schrödinger equation with variable coefficients. Int. J. Mod. Phys. B 19, 4629–4636 (2005)

    Article  Google Scholar 

  15. Tang, X.Y., Shukla, P.K.: Solution of the one-dimensional spatially inhomogeneous cubic–quintic nonlinear Schrödinger equation with an external potential. Phys. Rev. A 76, 013612 (2007)

    Article  Google Scholar 

  16. Avelar, A.T., Bazeia, D., Cardoso, W.B.: Solitons with cubic and quintic nonlinearities modulated in space and time. Phys. Rev. E 79, 025602(R) (2009)

    Article  Google Scholar 

  17. He, J.R., Li, H.M.: Analytical solitary-wave solutions of the generalized nonautonomous cubic–quintic nonlinear Schrödinger equation with different external potentials. Phys. Rev. E 83, 066607 (2011)

    Article  Google Scholar 

  18. He, J.D., Zhang, J.F., Zhang, M.Y., Dai, C.Q.: Analytical nonautonomous soliton solutions for the cubic–quintic nonlinear Schrödinger equation with distributed coefficients. Opt. Commun. 285, 755–760 (2012)

    Article  Google Scholar 

  19. Özemir, C., Güngör, F.: Symmetry classification of variable coefficient cubic–quintic nonlinear Schrödinger equations. J. Math. Phys. 54, 023502 (2013)

    Article  MathSciNet  Google Scholar 

  20. Wang, P., Feng, L., Shang, T., Guo, L.X., Cheng, G.H., Du, Y.J.: Analytical soliton solutions for the cubic–quintic nonlinear Schrödinger equation with Raman effect in the nonuniform management systems. Nonlinear Dyn. 79, 387–395 (2015)

    Article  Google Scholar 

  21. Wang, Y.Y., Chen, L., Dai, C.Q., Zheng, J., Fan, Y.: Exact vector multipole and vortex solitons in the media with spatially modulated cubic–quintic nonlinearit. Nonlinear Dyn. 90, 1269–1275 (2017)

    Article  Google Scholar 

  22. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Hidden symmetry reductions and the Ablowitz–Kaup–Newell–Segur hierarchies for nonautonomous solitons. In: Porsezian, K., Ganapathy, R. (eds.) Odyssey of Light in Nonlinear Optical Fibers: Theory and Applications, pp. 145–187. CRC Press, Taylor & Francis, New York (2015)

    Google Scholar 

  23. Serkin, V.N., Belyaeva, T.L.: Exactly integrable nonisospectral models for femtosecond colored solitons and their reversible transformations. Optik 158, 1289–1294 (2018)

    Article  Google Scholar 

  24. Serkin, V.N., Belyaeva, T.L.: Nontrivial Galilean-like invariance of the generalized higher-order nonlinear Schrödinger equation model with gravitation-like potential and the soliton analogies of the cosmic dark energy and antigravitation effects. Optik 160, 389–395 (2018)

    Article  Google Scholar 

  25. Kengne, E., Lakhssassi, A., Liu, W.M.: Non-autonomous solitons in inhomogeneous nonlinear media with distributed dispersion. Nonlinear Dyn. 97, 449–469 (2019)

    Article  Google Scholar 

  26. Gupta, R.K., Singh, M.: Nonclassical symmetries and similarity solutions of variable coefficient coupled KdV system using compatibility method. Nonlinear Dyn. 87, 1543–1552 (2017)

    Article  MathSciNet  Google Scholar 

  27. Liu, H.Z., Yue, C.: Lie symmetries, integrable properties and exact solutions to the variable-coefficient nonlinear evolution equations. Nonlinear Dyn. 89, 1989–2000 (2017)

    Article  MathSciNet  Google Scholar 

  28. Kumar, V., Alqahtani, A.: Lie symmetry analysis, soliton and numerical solutions of boundary value problem for variable coefficients coupled KdV-Burgers equation. Nonlinear Dyn. 90, 2903–2915 (2017)

    Article  MathSciNet  Google Scholar 

  29. Mhlanga, I.E., Khalique, C.M.: A study of a generalized Benney–Luke equation with time-dependent coefficients. Nonlinear Dyn. 90, 1535–1544 (2017)

    Article  MathSciNet  Google Scholar 

  30. Cheviakov, A.F.: GEM software package for computation of symmetries and conservation laws of differential equations. Comput. Phys. Commun. 176, 48–61 (2007)

    Article  MathSciNet  Google Scholar 

  31. Cheviakov, A.F.: Symbolic computation of equivalence transformations and parameter reduction for nonlinear physical models. Comput. Phys. Commun. 220, 56–73 (2017)

    Article  MathSciNet  Google Scholar 

  32. Bruzón, M.S., de la Rosa, R., Tracinà, R.: Exact solutions via equivalence transformations of variable-coefficient fifth-order KdV equations. Appl. Math. Comput. 325, 239–245 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Brugarinoa, T., Sciacca, M.: Integrability of an inhomogeneous nonlinear Schrödinger equation in Bose-Einstein condensates and fiber optics. J. Math. Phys. 51, 093503 (2010)

    Article  MathSciNet  Google Scholar 

  34. Clarkson, P.A., Kruskal, M.: New similarity reductions of the Boussinesq equation. J. Math. Phys. 30, 2201 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the 13th Five-Year National Key Research and Development Program of China with Grant No. 2016YFC0401406 and the Fundamental Research Funds of the Central Universities with the Grant Nos. 2019MS050 and 2020MS043. The authors also thank the anonymous reviewers for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelin Yong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Yong, X., Chen, Y. et al. Equivalence transformations and differential invariants of a generalized cubic–quintic nonlinear Schrödinger equation with variable coefficients. Nonlinear Dyn 102, 339–348 (2020). https://doi.org/10.1007/s11071-020-05940-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05940-9

Keywords

Navigation