Skip to main content

Advertisement

Log in

Selection of antileishmanial sesquiterpene lactones from SistematX database using a combined ligand-/structure-based virtual screening approach

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Leishmaniasis refers to a complex of diseases, caused by the intracellular parasitic protozoans belonging to the genus Leishmania. Among the three types of disease manifestations, the most severe type is visceral leishmaniasis, which is caused by Leishmania donovani, and is diagnosed in more than 20,000 cases annually, worldwide. Because the current therapeutic options for disease treatment are associated with several limitations, the identification of new potential leads/drugs remains necessary. In this study, a combined approach was used, based on two different virtual screening (VS) methods, which were designed to select promising antileishmanial agents from among the entire sesquiterpene lactone (SL) dataset registered in SistematX, a web interface for managing a secondary metabolite database that is accessible by multiple platforms on the Internet. Thus, a ChEMBL dataset, including 3159 and 1569 structures that were previously tested against L. donovani amastigotes and promastigotes in vitro, respectively, was used to develop two random forest models, which performed with greater than 74% accuracy in both the cross-validation and test sets. Subsequently, a ligand-based VS assay was performed against the 1306 SistematX-registered SLs. In parallel, the crystal structures of three L. donovani target proteins, N-myristoyltransferase, ornithine decarboxylase, and mitogen-activated protein kinase 3, and a homology model of pteridine reductase 1 were used to perform a structure-based VS, using molecular docking, of the entire SistematX SL dataset. The consensus analysis of these two VS approaches resulted in the normalization of probability scores and identified 13 promising, enzyme-targeting, antileishmanial SLs from SistematX that may act against L. donovani.

Graphic abstract

A combined approach based on two different virtual screening methods (structure-based and ligand-based) was performed using an in-house dataset composed of 1306 sesquiterpene lactones to identify potential antileishmanial (Leishmania donovani) structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Babuadze G, Farlow J, de Koning HP, Carrillo E, Chakhunashvili G, Murskvaladze M, Kekelidze M, Karseladze I, Kokaia N, Kalandadze I, Tsereteli D, Markhvashvili I, Sidamonidze K, Chanturia G, Adeishvili E, Imnadze P (2016) Seroepidemiology and molecular diversity of Leishmania donovani complex in Georgia. Parasit Vectors 9(1):279. https://doi.org/10.1186/s13071-016-1558-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wijerathna T, Gunathunga S, Gunathilaka N (2020) Recent developments and future directions in the paratransgenesis based control of Leishmania transmission. Biol Control. https://doi.org/10.1016/j.biocontrol.2020.104260

    Article  Google Scholar 

  3. Basano SdA, Camargo LMA (2004) Leishmaniose tegumentar americana: histórico, epidemiologia e perspectivas de controle. Rev Bras Epidemiol. https://doi.org/10.1590/S1415-790X2004000300010

    Article  Google Scholar 

  4. Fiocruz As Leishmanioses. https://www.dbbm.fiocruz.br/tropical/leishman/leishext/html/ciclo_biol_gico.htm. Accessed 29 Feb 2020

  5. Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, Lopez-Velez R, Garcia-Hernandez R, Pountain AW, Mwenechanya R, Papadopoulou B (2017) Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl Trop Dis 11(12):e0006052. https://doi.org/10.1371/journal.pntd.0006052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kumar A (2020) Survival strategies of Leishmania parasite: too many questions and few answers. Curr Pharmacol Rep. https://doi.org/10.1007/s40495-020-00209-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bhattacharya P, Dey R, Dagur PK, Joshi AB, Ismail N, Gannavaram S, Debrabant A, Akue AD, KuKuruga MA, Selvapandiyan A, McCoy JP Jr, Nakhasi HL (2016) Live attenuated Leishmania donovani centrin knock out parasites generate non-inferior protective immune response in aged mice against visceral Leishmaniasis. PLoS Negl Trop Dis 10(8):e0004963. https://doi.org/10.1371/journal.pntd.0004963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. WHO World Health Organization. Leishmaniasis: epidemiological situation. https://www.who.int/leishmaniasis/burden/en/. Accessed 09 Mar 2020

  9. Anversa L, Tiburcio MGS, Richini-Pereira VB, Ramirez LE (2018) Human leishmaniasis in Brazil: a general review. Rev Assoc Med Bras (1992) 64(3):281–289. https://doi.org/10.1590/1806-9282.64.03.281

    Article  Google Scholar 

  10. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, Team WHOLC (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 7(5):e35671. https://doi.org/10.1371/journal.pone.0035671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoet S, Opperdoes F, Brun R, Quetin-Leclercq J (2004) Natural products active against African trypanosomes: a step towards new drugs. Nat Prod Rep 21(3):353–364. https://doi.org/10.1039/b311021b

    Article  CAS  PubMed  Google Scholar 

  12. Utzinger J, Becker SL, Knopp S, Blum J, Neumayr AL, Keiser J, Hatz CF (2012) Neglected tropical diseases: diagnosis, clinical management, treatment and control. Swiss Med Wkly 142:w13727. https://doi.org/10.4414/smw.2012.13727

    Article  PubMed  Google Scholar 

  13. Gilbert IH (2013) Drug discovery for neglected diseases: molecular target-based and phenotypic approaches: miniperspectives series on phenotypic screening for antiinfective targets. J Med Chem 56(20):7719–7726. https://doi.org/10.1021/jm400362b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Palma LC, Ferreira L, Petersen A, Dias BRS, Menezes JPB, Moreira DRM, Hernandes MZ, Veras PST (2019) A docking-based structural analysis of geldanamycin-derived inhibitor binding to human or Leishmania Hsp90. Sci Rep 9(1):14756. https://doi.org/10.1038/s41598-019-51239-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83(3):770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  16. Herrera Acevedo C, Scotti L, Feitosa Alves M, Formiga Melo Diniz M, Scotti M (2017) Computer-aided drug design using sesquiterpene lactones as sources of new structures with potential activity against infectious neglected diseases. Molecules 22(1):79. https://doi.org/10.3390/molecules22010079

    Article  CAS  PubMed Central  Google Scholar 

  17. Schmidt TJ, Nour AM, Khalid SA, Kaiser M, Brun R (2009) Quantitative structure-antiprotozoal activity relationships of sesquiterpene lactones. Molecules 14(6):2062–2076. https://doi.org/10.3390/molecules14062062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karioti A, Skaltsa H, Kaiser M, Tasdemir D (2009) Trypanocidal, leishmanicidal and cytotoxic effects of anthecotulide-type linear sesquiterpene lactones from Anthemis auriculata. Phytomedicine 16(8):783–787. https://doi.org/10.1016/j.phymed.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  19. Kumar P, Kumar A, Verma SS, Dwivedi N, Singh N, Siddiqi MI, Tripathi RP, Dube A, Singh N (2008) Leishmania donovani pteridine reductase 1: biochemical properties and structure-modeling studies. Exp Parasitol 120(1):73–79. https://doi.org/10.1016/j.exppara.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  20. Saudagar P, Saha P, Saikia AK, Dubey VK (2013) Molecular mechanism underlying antileishmanial effect of oxabicyclo[3.3.1]nonanones: inhibition of key redox enzymes of the pathogen. Eur J Pharm Biopharm 85(3 Pt A):569–577. https://doi.org/10.1016/j.ejpb.2013.08.014

    Article  CAS  PubMed  Google Scholar 

  21. Shukla AK, Patra S, Dubey VK (2012) Iridoid glucosides from Nyctanthes arbortristis result in increased reactive oxygen species and cellular redox homeostasis imbalance in Leishmania parasite. Eur J Med Chem 54:49–58. https://doi.org/10.1016/j.ejmech.2012.04.034

    Article  CAS  PubMed  Google Scholar 

  22. Shukla AK, Patra S, Dubey VK (2011) Evaluation of selected antitumor agents as subversive substrate and potential inhibitor of trypanothione reductase: an alternative approach for chemotherapy of Leishmaniasis. Mol Cell Biochem 352(1–2):261–270. https://doi.org/10.1007/s11010-011-0762-0

    Article  CAS  PubMed  Google Scholar 

  23. Saudagar P, Dubey VK (2011) Cloning, expression, characterization and inhibition studies on trypanothione synthetase, a drug target enzyme, from Leishmania donovani. Biol Chem 392(12):1113–1122. https://doi.org/10.1515/BC.2011.222

    Article  PubMed  Google Scholar 

  24. Resh MD (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta (BBA) Mol Cell Res 1451(1):1–16. https://doi.org/10.1016/S0167-4889(99)00075-0

    Article  CAS  Google Scholar 

  25. Tate EW, Bell AS, Rackham MD, Wright MH (2014) N-Myristoyltransferase as a potential drug target in malaria and leishmaniasis. Parasitology 141(1):37–49. https://doi.org/10.1017/S0031182013000450

    Article  CAS  PubMed  Google Scholar 

  26. Chawla B, Madhubala R (2010) Drug targets in Leishmania. J Parasit Dis 34(1):1–13. https://doi.org/10.1007/s12639-010-0006-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nichol CA, Smith GK, Duch DS (1985) Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Annu Rev Biochem 54(1):729–764. https://doi.org/10.1146/annurev.bi.54.070185.003501

    Article  CAS  PubMed  Google Scholar 

  28. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  29. Noble WS (2006) What is a support vector machine? Nat Biotechnol 24(12):1565–1567. https://doi.org/10.1038/nbt1206-1565

    Article  CAS  PubMed  Google Scholar 

  30. Fourches D, Muratov E, Tropsha A (2015) Curation of chemogenomics data. Nat Chem Biol 11(8):535. https://doi.org/10.1038/nchembio.1881

    Article  CAS  PubMed  Google Scholar 

  31. Muratov EN, Varlamova EV, Artemenko AG, Polishchuk PG, Kuz'min VE (2012) Existing and developing approaches for QSAR analysis of mixtures. Mol Inform 31(3–4):202–221. https://doi.org/10.1002/minf.201100129

    Article  CAS  PubMed  Google Scholar 

  32. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57(12):4977–5010. https://doi.org/10.1021/jm4004285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cruciani G, Crivori P, Carrupt P-A, Testa B (2000) Molecular fields in quantitative structure–permeation relationships: the VolSurf approach. J Mol Struct (Thoechem) 503(1):17–30. https://doi.org/10.1016/S0166-1280(99)00360-7

    Article  CAS  Google Scholar 

  34. Cruciani G, Pastor M, Guba W (2000) VolSurf: a new tool for the pharmacokinetic optimization of lead compounds. Eur J Pharm Sci 11(Suppl 2):S29–39. https://doi.org/10.1016/s0928-0987(00)00162-7

    Article  CAS  PubMed  Google Scholar 

  35. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Thiel K, Wiswedel B (2009) KNIME-the Konstanz information miner: version 2.0 and beyond. ACM SIGKDD Explor Newslett 11(1):26–31. https://doi.org/10.1145/1656274.1656280

    Article  Google Scholar 

  36. Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ, Tropsha A (2010) Quantitative nanostructure−activity relationship modeling. ACS Nano 4(10):5703–5712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36. https://doi.org/10.1148/radiology.143.1.7063747

    Article  CAS  PubMed  Google Scholar 

  38. Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405(2):442–451. https://doi.org/10.1016/0005-2795(75)90109-9

    Article  CAS  PubMed  Google Scholar 

  39. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740. https://doi.org/10.1021/jm901137j

    Article  CAS  PubMed  Google Scholar 

  40. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2012) GenBank. Nucleic Acids Res 41(D1):D36–D42. https://doi.org/10.1093/nar/gkq1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1978) The Protein Data Bank: a computer-based archival file for macromolecular structures. Arch Biochem Biophys 185(2):584–591. https://doi.org/10.1016/0003-9861(78)90204-7

    Article  CAS  PubMed  Google Scholar 

  42. Gourley DG, Schuttelkopf AW, Leonard GA, Luba J, Hardy LW, Beverley SM, Hunter WN (2001) Pteridine reductase mechanism correlates pterin metabolism with drug resistance in trypanosomatid parasites. Nat Struct Biol 8(6):521–525. https://doi.org/10.1038/88584

    Article  CAS  PubMed  Google Scholar 

  43. Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. https://doi.org/10.1006/jmbi.1993.1626

    Article  PubMed  Google Scholar 

  44. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291. https://doi.org/10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  45. Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins Struct Funct Bioinform 50(3):437–450. https://doi.org/10.1002/prot.10286

    Article  CAS  Google Scholar 

  46. Diego S (2007) Discovery studio modeling environment release 2.1. Accelerys Software Inc, San Diego

    Google Scholar 

  47. Dufe VT, Ingner D, Heby O, Khomutov AR, Persson L, Al-Karadaghi S (2007) A structural insight into the inhibition of human and Leishmania donovani ornithine decarboxylases by 1-amino-oxy-3-aminopropane. Biochem J 405(2):261–268. https://doi.org/10.1042/BJ20070188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brannigan JA, Smith BA, Yu Z, Brzozowski AM, Hodgkinson MR, Maroof A, Price HP, Meier F, Leatherbarrow RJ, Tate EW, Smith DF, Wilkinson AJ (2010) N-myristoyltransferase from Leishmania donovani: structural and functional characterisation of a potential drug target for visceral leishmaniasis. J Mol Biol 396(4):985–999. https://doi.org/10.1016/j.jmb.2009.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  50. Berendsen HJ, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56. https://doi.org/10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  51. Schuttelkopf AWVAD (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr. https://doi.org/10.1107/S0907444904011679

    Article  PubMed  Google Scholar 

  52. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  53. Kumari R, Kumar R, Open Source Drug Discovery C, Lynn A (2014) g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962

    Article  CAS  PubMed  Google Scholar 

  54. Castillo-González D, Mergny J-L, De Rache A, Pérez-Machado G, Cabrera-Pérez MA, Nicolotti O, Introcaso A, Mangiatordi GF, Guédin A, Bourdoncle A (2015) Harmonization of QSAR best practices and molecular docking provides an efficient virtual screening tool for discovering new G-quadruplex ligands. J Chem Inf Model 55(10):2094–2110. https://doi.org/10.1021/acs.jcim.5b00415

    Article  CAS  PubMed  Google Scholar 

  55. Rueda M, Abagyan R (2016) Best practices in docking and activity prediction. bioRxiv. https://doi.org/10.1101/039446

    Article  Google Scholar 

  56. Scotti MT, Herrera-Acevedo C, Oliveira TB, Costa RPO, Santos S, Rodrigues RP, Scotti L, Da-Costa FB (2018) SistematX, an online web-based cheminformatics tool for data management of secondary metabolites. Molecules 23(1):103. https://doi.org/10.3390/molecules23010103

    Article  CAS  PubMed Central  Google Scholar 

  57. Geissman T, Griffin S, Waddell TG, Chen HH (1969) Sesquiterpene lactones. some new constituents of Ambrosia species: A. psilostachya and A. acanthicarpa. Phytochemistry 8(1):145–150. https://doi.org/10.1016/S0031-9422(00)85806-9

    Article  CAS  Google Scholar 

  58. Schmidt TJ (1999) Toxic activities of sesquiterpene lactones: structural and biochemical aspects. Curr Org Chem 3(577–608):4

    Google Scholar 

  59. Popławski J, Holub M, Samek Z, Herout V (1971) On terpenes. CCIX. Arnicolides-sesquiterpenic lactones from the leaves of Arnica montana L. Collect Czechoslov Chem Commun 36(6):2189–2199. https://doi.org/10.1135/cccc19712189

    Article  Google Scholar 

  60. Xie C, Wang H, Sun X, Meng L, Wang M, Bartlam M, Guo Y (2015) Isolation, characterization, and antiproliferative activities of eudesmanolide derivatives from the flowers of Inula japonica. J Agric Food Chem 63(41):9006–9011. https://doi.org/10.1021/acs.jafc.5b03075

    Article  CAS  PubMed  Google Scholar 

  61. Acevedo CH, Scotti L, Scotti MT (2018) In silico studies designed to select sesquiterpene lactones with potential antichagasic activity from an in-house Asteraceae database. ChemMedChem 13(6):634–645. https://doi.org/10.1002/cmdc.201700743

    Article  CAS  PubMed  Google Scholar 

  62. Walker RH, Wells LW, McGUIRE JA (1989) Bristly starbur (Acanthospermum hispidum) interference in peanuts (Arachis hypogaea). Weed Sci 37(2):196–200. https://doi.org/10.1017/S0043174500071770

    Article  Google Scholar 

  63. Kaur J, Dube D, Ramachandran R, Singh P, Singh N (2012) Thianthrene is a novel inhibitor of Leishmania donovani pteridine reductase 1 (PTR1). J Mol Biochem 1(2):68–75

    Google Scholar 

  64. Rozo-Lugo C, Cuca-Suárez LE, Schmidt TJ, Coy-Barrera E (2018) Tetrahydrobenzofuran-6 (2 H)-one Neolignans from Ocotea heterochroma: their platelet activating factor (PAF) antagonistic activity and in silico insights into the PAF receptor binding mode. J Nat Prod 81(9):1968–1975. https://doi.org/10.1021/acs.jnatprod.8b00189

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the CNPq and Capes for financial Support, Grant Numbers 309648/2019-0 and 431254/2018-4, and the Student Agreement Program of Graduate—PEC-PG of CNPq—Brazil. UMNG is also thanked for the financial support through Project IMP-CIAS-2924. This study was performed as part of the activities of the Research Network Natural Products against Neglected Diseases (ResNet-NPND), https://resnetnpnd.org/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Tullius Scotti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 88 kb)

Supplementary file2 (XLSX 6328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera-Acevedo, C., Dos Santos Maia, M., Cavalcanti, É.B.V.S. et al. Selection of antileishmanial sesquiterpene lactones from SistematX database using a combined ligand-/structure-based virtual screening approach. Mol Divers 25, 2411–2427 (2021). https://doi.org/10.1007/s11030-020-10139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10139-6

Keywords

Navigation