Skip to main content
Log in

Double Penalized Semi-Parametric Signed-Rank Regression with Adaptive LASSO

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In this paper, a semi-parametric regression model with an adaptive LASSO penalty imposed on both the linear and the nonlinear components of the mode is considered. The model is rewritten so that a signed-rank technique can be used for estimation. The nonlinear part consists of a covariate that enters the model nonlinearly via an unknown function that is estimated using B-splines. The author shows that the resulting estimator is consistent under heavy-tailed distributions and asymptotic normality results are given. Monte Carlo simulations as well as practical applications are studied to assess the validity of the proposed estimation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brunk H D, On the estimation of parameters restricted by inequalities, Journal of the American Statistical Association, 1958, 29: 437–454.

    MathSciNet  MATH  Google Scholar 

  2. Cleveland W S, Robust locally weighted regression and smoothing scatterplots, Journal of the American Statistical Association, 1979, 74(368): 829–836.

    Article  MathSciNet  Google Scholar 

  3. Brunk H D and Johansen S, A generalized Radon-Nikodym derivative, Pacific Journal of Mathematics, 1970, 34: 585–617.

    Article  MathSciNet  Google Scholar 

  4. Wright F T, The asymptotic behavior of monotone regression estimates, The Annals of Statistics, 1981, 9(2): 443–448.

    Article  MathSciNet  Google Scholar 

  5. Wang Y and Huang J, Limiting distribution for monotone median regression, Journal of Statistical Planning and Inference, 2002, 107(1–2): 281–287.

    Article  MathSciNet  Google Scholar 

  6. He X and Shi P, Monotone B-spline smoothing, Journal of the American Statistical Association, 1998, 93(442): 643–650.

    MathSciNet  MATH  Google Scholar 

  7. Álvarez E E and Yohai V J, M-estimators for isotonic regression, Journal of Statistical Planning and Inference, 2012, 142(8): 2351–2368.

    Article  MathSciNet  Google Scholar 

  8. Ramsay J O, Estimating smooth monotone functions, Journal of the Royal Statistical Society, Series B, Statistical Methodology, 1998, 60(2): 365–375.

    Article  MathSciNet  Google Scholar 

  9. Lu M, Spline-based sieve maximum likelihood estimation in the partly linear model under monotonicity constraints, Journal of Multivariate Analysis, 2010, 101(10): 2528–2542.

    Article  MathSciNet  Google Scholar 

  10. Lu M, Zhang Y, and Huang J, Estimation of the mean function with panel count data using monotone polynomial splines, Biometrika, 2007, 94(3): 705–718.

    Article  MathSciNet  Google Scholar 

  11. Lu M, Zhang Y, and Huang J, Semiparametric estimation methods for panel count data using monotone B-splines, Journal of the American Statistical Association, 2009, 104(487): 1060–1070.

    Article  MathSciNet  Google Scholar 

  12. Du J, Sun Z, and Xie T, M-estimation for the partially linear regression model under monotonic constraints, Statistics & Probability Letters, 2013, 83(5): 1353–1363.

    Article  MathSciNet  Google Scholar 

  13. Schumaker L L, Spline Functions: Basic Theory, John Wiley & Sons, Inc., New York, 1981.

    MATH  Google Scholar 

  14. Ruppert D, Wand M P, and Carroll R J, Semiparametric Regression, Cambridge University Press, Cambridge, 2003.

    Book  Google Scholar 

  15. Hastie T J and Tibshirani R J, Generalized Additive Models, volume 43 of Monographs on Statistics and Applied Probability, Chapman and Hall, Ltd., London, 1990.

    Google Scholar 

  16. Bindele H F and Abebe A, Bounded influence nonlinear signed-rank regression, The Canadian Journal of Statistics. La Revue Canadienne de Statistique, 2012, 40(1): 172–189.

    Article  MathSciNet  Google Scholar 

  17. Johnson B A and Peng L, Rank-based variable selection, Journal of Nonparametric Statistics, 2008, 20(3): 241–252.

    Article  MathSciNet  Google Scholar 

  18. Leng C, Variable selection and coefficient estimation via regularized rank regression, Statistica Sinica, 2010, 20(1): 167–181.

    MathSciNet  MATH  Google Scholar 

  19. Xu J, Leng C, and Ying Z, Rank-based variable selection with censored data, Statistics and Computing, 2010, 20(2): 165–176.

    Article  MathSciNet  Google Scholar 

  20. Abebe A and Bindele H F, Robust signed-rank variable selection in linear regression, Robust Rank-Based and Nonparametric Methods, Volume 168 of Springer Proc. Math. Stat., Springer, Cham, 2016, 25–45.

    Chapter  Google Scholar 

  21. De Boor, A Practical Guide to Splines, volume 27. Springer-Verlag, New York, 1978.

    MATH  Google Scholar 

  22. Hettmansperger T P and McKean J W, Robust Nonparametric Statistical Methods, volume 119 of Monographs on Statistics and Applied Probability. CRC Press, Boca Raton, FL, second edition, 2011.

    Google Scholar 

  23. Zou H, The adaptive lasso and its oracle properties, Journal of the American Statistical Association, 2006, 101(476): 1418–1429.

    Article  MathSciNet  Google Scholar 

  24. Tibshirani R, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society Series B Methodological, 1996, 58(1): 267–288.

    MathSciNet  MATH  Google Scholar 

  25. Fan J and Li R, Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 2001, 96(456): 1348–1360.

    Article  MathSciNet  Google Scholar 

  26. Rousseeuw P J, Least median of squares regression, Journal of the American Statistical Association, 1984, 79(388): 871–880.

    Article  MathSciNet  Google Scholar 

  27. Johnson B A, Rank-based estimation in the l1-regularized partly linear model for censored outcomes with application to integrated analyses of clinical predictors and gene expression data, Biostatistics, 2009, 10(4): 659–666.

    Article  Google Scholar 

  28. Ruppert D, Selecting the number of knots for penalized splines, Journal of Computational and Graphical Statistics, 2002, 11(4): 735–757.

    Article  MathSciNet  Google Scholar 

  29. Antoniadis A, Bigot J, and Gijbels I, Penalized wavelet monotone regression, Statistics and Probability Letters, 2007, 77(16): 1608–1621.

    Article  MathSciNet  Google Scholar 

  30. Vardeman S B, Statistics for Engineers Problem Solving, PWS Publishing Company, 1994.

  31. Kwessi E and Nguelifack B M, Signed-rank analysis of a partial linear model with B-splines estimated monotone non parametric function, Communications in Statistics — Theory and Methods, 2017, 46(10): 4843–4854.

    Article  MathSciNet  Google Scholar 

  32. Wu C F, Asymptotic theory of nonlinear least squares estimation, The Annals of Statistics, 1981, 501–513.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddy Kwessi.

Additional information

This paper was recommended for publication by Editor DONG Yuexiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwessi, E. Double Penalized Semi-Parametric Signed-Rank Regression with Adaptive LASSO. J Syst Sci Complex 34, 381–401 (2021). https://doi.org/10.1007/s11424-020-9097-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-9097-9

Keywords

Navigation