Skip to main content
Log in

A weak Weyl’s law on compact metric measure spaces

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

The well known Weyl’s Law (Weyl’s asymptotic formula) gives an approximation to the number \({\mathcal {N}}_{\omega }\) of eigenvalues (counted with multiplicities) on a large interval \([0, \omega ]\) of the Laplace–Beltrami operator on a compact Riemannian manifold \(\mathbf{M}\). In this paper we prove a kind of a weak version of the Weyl’s law on certain compact metric measure spaces \(\mathbf{X}\) which are equipped with a self-adjoint non-negative operator \({\mathcal {L}}\) acting in \(L_{2}(\mathbf{X})\). Roughly speaking, we show that if a certain Poincaré inequality holds then \({\mathcal {N}}_{\omega }\) is controlled by the cardinality of an appropriate cover \({\mathcal {B}}_{\omega ^{-1/2}}=\{B(x_{j},\omega ^{-1/2})\},\quad x_{j}\in \mathbf{X},\) of \(\mathbf{X}\) by balls of radius \(\omega ^{-1/2}\). Moreover, an opposite inequality holds if the heat kernel that corresponds to \({\mathcal {L}}\) satisfies short time Gaussian estimates. It is known that in the case of the so-called strongly local regular with a complete intrinsic metric Dirichlet spaces the Poincaré inequality holds iff the corresponding heat kernel satisfies short time Gaussian estimates. Thus for such spaces one obtains that \({\mathcal {N}}_{\omega }\) is essentially equivalent to the cardinality of a cover \({\mathcal {B}}_{\omega ^{-1/2}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S.: Theory of Dirichlet Forms and Applications, (English summary) Lectures on Probability Theory and Statistics (Saint-Flour, 2000), 1106, Lecture Notes in Mathematics, 1816. Springer, Berlin (2003)

    Google Scholar 

  2. Ambrosio, L., Honda, S., Tewodrose, D.: Short-time behavior of the heat kernel and Weyl’s law on \(RCD^{*}(K, N)\) spaces. Ann. Glob. Anal. Geom. 53(1), 97–119 (2018)

    Article  MathSciNet  Google Scholar 

  3. Birman, M., Solomyak, M.: Spectral Theory of Self-Adjoint Operators in Hilbert Space. D.Reidel Publishing Co., Dordrecht (1987)

    Book  Google Scholar 

  4. Bouleau, N., Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space. Walter de Gruyter, Berlin (1991)

    Book  Google Scholar 

  5. Coifman, R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogénes, Lecture Notes in Mathematics, vol. 242. Springer-Verlag, Berlin (1971)

    Book  Google Scholar 

  6. Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

    Article  MathSciNet  Google Scholar 

  7. Coulhon, T., Kerkyacharian, G., Petrushev, P.: Heat kernel generated frames in the setting of Dirichlet spaces. J. Fourier Anal. Appl. 18(5), 995–1066 (2012)

    Article  MathSciNet  Google Scholar 

  8. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, De Gruyter Studies in Mathematics, vol. 19. Walter De Gruyter and Co., Berlin (1994)

    Book  Google Scholar 

  9. Hebisch, W., Saloff-Coste, L.: On the relation between elliptic and parabolic Harnack inequalities. Ann. Inst. Fourier 51(5), 1437–1481 (2001)

    Article  MathSciNet  Google Scholar 

  10. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  Google Scholar 

  11. Maheux, P.: Estimations du noyau de la chaleur sur les espaces homogenes. J. Geom. Anal. 8, 65–96 (1998)

    Article  MathSciNet  Google Scholar 

  12. Nagel, A., Stein, E., Wainger, S.: Balls and metrics defined by vector fields I: basic properties. Acta Math. 155, 103–147 (1985)

    Article  MathSciNet  Google Scholar 

  13. Pesenson, I.: A sampling theorem on homogeneous manifolds. Trans. Am. Math. Soc. 352(9), 4257–4269 (2000)

    Article  MathSciNet  Google Scholar 

  14. Pesenson, I.Z.: Shannon Sampling and Weak Weyl’s Law on Compact Riemannian Manolds. Springer Proceedings in Mathematics & Statistics, vol. 275. Springer, Cham (2019)

    Google Scholar 

  15. Sturm, K.T.: Analysis on local Dirichlet spaces I. Recurrence, conservativeness and Lp-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Sturm, K.T.: Analysis on local Dirichlet spaces II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math. 32, 275–312 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Sturm, K.T.: Analysis on local Dirichlet spaces III. The parabolic Harnack inequality. J. Math. Pures Appl. 75, 273–297 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Zhang, H.-C., Zhu, X.-P.: Weyl’s law on \(RCD^{*}(K,N)\) metric measure spaces. arXiv:1701.01967v4 [math.DG]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Z. Pesenson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pesenson, I.Z. A weak Weyl’s law on compact metric measure spaces. J. Pseudo-Differ. Oper. Appl. 11, 1447–1463 (2020). https://doi.org/10.1007/s11868-020-00369-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-020-00369-5

Keywords

Mathematics Subject Classification

Navigation