Skip to main content
Log in

Further correcting pressure effects on SBE911 CTD-conductivity data from hadal depths

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Hadal, > 6000 m deep shipborne Sea-Bird Electronics SBE 911plus Conductivity Temperature Depth (CTD) data are obtained using two different systems in the vicinity of the Earth’s deepest point, in the Challenger Deep, Mariana Trench 14 years apart. Below 7000 m in very weakly density stratified waters, the salinity data from both sets show an artificial increase with depth of about 10–6 g kg−1 m−1 that is not covered by the SBE linear pressure correction to the conductivity data. With the aid of independent water sample data, salinity is corrected and an additional algorithm for the pressure correction on conductivity data is formulated. The corrected salinity data still weakly increase with depth, together with a decrease in temperature, which may point at an influx of dense modified Antarctic bottom water. The corrected density variations with depth are used in calculations of deep turbulence values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bouffard D, Boegman L (2013) A diapycnal diffusivity model for stratified environmental flows. Dyn Atmos Oc 61–62:14–34

    Article  Google Scholar 

  • Dillon TM (1982) Vertical overturns: a comparison of thorpe and ozmidov length scales. J Geophys Res 87:9601–9613

    Article  Google Scholar 

  • Galbraith PS, Kelley DE (1996) Identifying overturns in CTD profiles. J Atmos Oceanic Technol 13:688–702

    Article  Google Scholar 

  • Gallo ND, Cameron J, Hardy K, Fryer P, Bartlett DH, Levin LA (2015) Submersible- and lander-observed community patterns in the Mariana and New Britain trenches: Influence of productivity and depth on epibenthic and scavenging communities. Deep-Sea Res I 99:119–133

    Article  Google Scholar 

  • Gargett A, Garner T (2008) Determining Thorpe scales from ship-lowered CTD density profiles. J Atmos Oceanic Technol 25:1657–1670

    Article  Google Scholar 

  • Glud RN, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R, Canfield DE, Kitazato H (2013) High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci 6:284–288

    Article  Google Scholar 

  • Gregg MC (1989) Scaling turbulent dissipation in the thermocline. J Geophys Res 94:9686–9698

    Article  Google Scholar 

  • Gregg MC, D’Asaro EA, Riley JJ, Kunze E (2018) Mixing efficiency in the ocean. Ann Rev Mar Sci 10:443–473

    Article  Google Scholar 

  • Holleman RC, Geyer WR, Ralston DK (2016) Stratified turbulence and mixing efficiency in a salt wedge estuary. J Phys Oceanogr 46:1769–1783

    Article  Google Scholar 

  • IOC, Scor, IAPSO (2010) The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic. Commission Manuals and Guides No 56. UNESCO, Paris, France

    Google Scholar 

  • Jamieson A (2015) The hadal zone, life in the deepest oceans. Cambridge University Press, Cambridge, UK, p 382

    Book  Google Scholar 

  • Johnson GC (1998) Deep water properties, velocities, and dynamics over ocean trenches. J Mar Res 56:329–347

    Article  Google Scholar 

  • Kawagucci S, Makabe A, Kodama T, Matsui Y, Yoshikawa C, Ono E, Wakita M, Nunoura T, Uchida H, Yokokawa T (2018) Hadal water biogeochemistry over the Izu-Ogasawara Trench observed with a full-depth CTD-CMS. Ocean Sci 14:575–588. https://doi.org/10.5194/os-14-575-2018

    Article  Google Scholar 

  • Kunze E, Firing E, Hummon JM, Chereskin TK, Thurnherr AM (2006) Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J Phys Oceanogr 36:1553–1576

    Article  Google Scholar 

  • Mantyla AW, Reid JL (1978) Measurements of water characteristics at depth greater than 10 km in the Mariana Trench. Deep-Sea Res 25:169–173

    Article  Google Scholar 

  • Mensah V, Le Menn M, Morel Y (2009) Thermal mass correction for the evaluation of salinity. J Atmos Oceanic Tech 26:665–672

    Article  Google Scholar 

  • Nakano T, Kitamura T, Sugimoto S, Suga T, Kumachi M (2015) Long-term variations of North Pacific Tropical Water along the 137°E repeat hydrographic section. J Oceanogr 71:229–238

    Article  Google Scholar 

  • Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, Kikuchi T, Miyazaki J, Koba K, Yoshida N, Sunamura M, Takai K (2015) Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth. P Natl Acad Sci USA 112:E1230–E1236

    Article  Google Scholar 

  • Oakey NS (1982) Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J Phys Oceanogr 12:256–271

    Article  Google Scholar 

  • Osborn TR (1980) Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys Oceanogr 10:83–89

    Article  Google Scholar 

  • Parks TW, Burrus CS (1987) Digital Filter Design. Wiley, New York, USA, p 342

    Google Scholar 

  • Qiu C, Liang H, Huang Y, Mao H, Yu J, Wang D, Su D (2020) Development of double cyclonic mesoscale eddies at around Xisha islands observed by a’Sea-Whale 2000’ autonomous underwater vehicle. Appl Ocean Res 101:102270

    Article  Google Scholar 

  • Sea-Bird Electronics (2013) Compressibility compensation of Sea-Bird conductivity sensors. Application Note No 10. Sea-Bird Electronics Inc, Bellevue WA, USA

    Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962

    Google Scholar 

  • Stansfield K, Garrett C, Dewey R (2001) The probability distribution of the Thorpe displacement within overturns in Juan de Fuca Strait. J Phys Oceanogr 31:3421–3434

    Article  Google Scholar 

  • Taira K, Yanagimoto D, Kitagawa S (2005) Deep CTD casts in the challenger deep. Mariana Trench J Oceanogr 61:447–454

    Google Scholar 

  • Thorpe SA (1977) Turbulence and mixing in a Scottish loch. Phil Trans Roy Soc Lond A 286:125–181

    Article  Google Scholar 

  • Uchida H, Nakano T, Tamba J, Widiatmo JV, Yamazawa K, Ozawa S, Kawano T (2015) Deep ocean temperature measurement with an uncertainty of 0.7 mK. J Atmos Oceanic Technol 32:2199–2210

    Article  Google Scholar 

  • Uchida H, Maeda Y, Kawamata S (2018) Compact underwater slip ring swivel, minimizing effect of CTD package rotation on data quality. Sea Technol 59(11):30–32

    Google Scholar 

  • Uchida H, Kawano T, Nakano T, Wakita M, Tanaka T, Tanihara S (2020) An expanded batch-to-batch correction for IAPSO standard seawater. J Atmos Oceanic Technol 37:1507–1520

    Article  Google Scholar 

  • van Haren H (2015) Ship motion effects in CTD data from weakly stratified waters of the Puerto Rico Trench. Deep-Sea Res I 105:19–25

    Article  Google Scholar 

  • van Haren H, Berndt C, Klaucke I (2017) Ocean mixing in deep-sea trenches: new insights from the challenger deep, mariana Trench. Deep-Sea Res I 129:1–9

    Article  Google Scholar 

  • Yasuda I, Fujio S, Yanagimoto D, Lee K-J, Sasaki Y, Zhai S, Tanaka M, Itoh S, Tanaka T, Hasegawa D, Goto Y, Sasano D (2020) Improved measurements of ocean turbulent energy dissipation using fast-response thermistors. J Oceanogr 5:10–46

    Google Scholar 

Download references

Acknowledgements

We thank the masters and crews of the R/V Hakuho Maru and R/V Sonne for the pleasant cooperation during the operations at sea. We acknowledge Dr. K. Taira who planned the CTD observations in the Mariana Trench during the Hakuho Maru Cruise in 2002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans van Haren.

Appendix

Appendix

Additional pressure correction to Sea-Bird SBE911 conductivity data at hadal depths.

Cc(p) = Co(p) −a0−a1p1−a2p2−a3p3−a4p4−a5p5−a6p6−a7p7−a8p8−a9p9 [S m−1], (A1).

with best-fit coefficients,

a0 = −1.0940527 × 10–03.

a1 =  + 2.0797759 × 10–06.

a2 = −1.9887985 × 10–09.

a3 =  + 1.0474409 × 10–12.

a4 = −3.2735743 × 10–16.

a5 =  + 6.3408610 × 10–20.

a6 =−7.7038164 × 10–24.

a7 =  + 5.7145710 × 10–28.

a8 = −2.3640827 × 10–32.

a9 =  + 4.1779238 × 10–37.

Here, Cc is the corrected conductivity and Co the original data from (2). Formula (A1) is applicable for all pressures, but yields noticeable corrections for great depths only.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Haren, H., Uchida, H. & Yanagimoto, D. Further correcting pressure effects on SBE911 CTD-conductivity data from hadal depths. J Oceanogr 77, 137–144 (2021). https://doi.org/10.1007/s10872-020-00565-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-020-00565-3

Keywords

Navigation