Skip to main content
Log in

Dual-band terahertz absorber based on graphene periodic arrays of disks and ribbons: circuit model approach

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A dual narrow band perfect THz absorber is presented in this work. The structure includes three layers of graphene ribbons, disks, and sheet on the TOPAS dielectric layer while a golden plate is placed at the bottom to act as a fully reflecting mirror against THz waves. According to the simulations, the device is robust enough to show independent operation versus layers thicknesses variations, chemical potentials mismatches, and changing of electron relaxation time. The designed THz absorber in this work is an appropriate basic block for several applications in THz optical systems such as sensors, detectors, and modulators. The layers in the proposed device are modeled via passive circuit elements and consequently, the equivalent circuit of the device is calculated. Leveraging developed circuit model and impedance matching concept, the proposed device is designed to perfect absorption at 1 THz and 7 THz. Ample simulations are performed using MATLAB and CST to verify the superior performance of the device. The presented manuscript considers the circuit model representation for three different layers of the device. For a unique structure, highly tunable response versus chemical potential is obtained. Circuit model approach and impedance matching theory are exploited to reduce computational time regarding conventional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Watts, C.M., Liu, X., Padilla, W.J.: Metamaterial electromagnetic wave absorbers. Adv. Mater. 24(23), 98–120 (2012)

    Google Scholar 

  2. Geim, A. K., Novoselov, K. S.: The rise of graphene. In: Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp. 11–19 (2010)

  3. Biabanifard, M., et al.: Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik 182, 433–442 (2019)

    Article  Google Scholar 

  4. Abbasi, M., Biabanifard, M., Abrishamian, M.S.: Design of symmetrical wide-angle graphene-based mid-infrared broadband perfect absorber based on circuit model. Photon. Nanostruct.-Fundam. Appl. 36, 100729 (2019)

    Article  Google Scholar 

  5. Biabanifard, M., Abrishamian, M.S.: Ultra-wideband terahertz graphene absorber using circuit model. Appl. Phys. A 124(12), 826 (2018)

    Article  Google Scholar 

  6. Ahi, K.: A method and system for enhancing the resolution of terahertz imaging. Measurement 138, 614–619 (2019)

    Article  Google Scholar 

  7. Soltani, M., et al.: A configurable two-layer four-bias graphene-based THz absorber. J. Comput. Electron. 19, 719–735 (2020)

    Article  Google Scholar 

  8. Biabanifard, M., Abrishamian, M.S.: Circuit modeling of tunable terahertz graphene absorber. Optik 158, 842–849 (2018)

    Article  Google Scholar 

  9. Aghaee, T., Orouji, A.A.: Circuit modeling of ultra-broadband terahertz absorber based on graphene array periodic disks. Int. J. Numer. Model. Electron. Netw. Devices Fields 33, e2586 (2019)

    Google Scholar 

  10. Islam, M.S., et al.: Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon 158, 559–567 (2020)

    Article  Google Scholar 

  11. Arsanjani, A., Biabanifard, M., Abrishamian, M.S.: A novel analytical method for designing a multi-band, polarization-insensitive and wide angle graphene-based THz absorber. Superlattices Microstruct. 128, 157–169 (2019)

    Article  Google Scholar 

  12. Tabatabaei, F., Biabanifard, M., Abrishamian, M.S.: Terahertz polarization-insensitive and all-optical tunable filter using Kerr effect in graphene disks arrays. Optik 180, 526–535 (2019)

    Article  Google Scholar 

  13. Biabanifard, M., Abrishamian, M.S.: Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons. AEU-Int. J. Electron. Commun. 95, 256–263 (2018)

    Article  Google Scholar 

  14. Yadav, V.S., et al.: Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence. Appl. Opt. 57(29), 8720–8726 (2018)

    Article  Google Scholar 

  15. Xiong, H., et al.: Equivalent circuit method analysis of graphene-metamaterial (GM) absorber. Plasmonics 13(3), 857–862 (2018)

    Article  Google Scholar 

  16. Zhang, K., et al.: Electromagnetic Theory for Microwaves and Optoelectronics. Springer, Berlin (1998)

    Book  Google Scholar 

  17. Pierantoni, L., Coccetti, F., Russer, P.: Nanoelectronics: the Paradigm shift [From the Guest Editors’ Desk]. IEEE Microw. Mag. 11(7), 8–10 (2010)

    Article  Google Scholar 

  18. Vincenzi, G., et al.: Extending ballistic graphene FET lumped element models to diffusive devices. Solid-State Electron. 76, 8–12 (2012)

    Article  Google Scholar 

  19. Biabanifard, S., et al.: Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons. Opt Commun 427, 418–425 (2018)

    Article  Google Scholar 

  20. Biabanifard, S.: Ultra-broadband terahertz absorber based on graphene ribbons. Optik 172, 1026–1033 (2018)

    Article  Google Scholar 

  21. Aghaee, T., Orouji, A.A.: Reconfigurable multi-band, graphene-based THz absorber: circuit model approach. Res Phys 16, 102855 (2020)

    Google Scholar 

  22. Jozani, K.J., et al.: Multi-bias, graphene-based reconfigurable THz absorber/reflector. Optik 198, 163248 (2019)

    Article  Google Scholar 

  23. Zanjani, M.S., et al.: A reconfigurable multi-band, multi-bias THz absorber. Optik 191, 22–32 (2019)

    Article  Google Scholar 

  24. Najafi, A., et al.: Reliable design of THz absorbers based on graphene patterns: exploiting genetic algorithm. Optik 203, 163924 (2020)

    Article  Google Scholar 

  25. Khavasi, A., Rejaei, B.: Analytical modeling of graphene ribbons as optical circuit elements. IEEE J. Quantum Electron. 50, 397–403 (2014)

    Article  Google Scholar 

  26. Parizi, S.B., Rejaei, B., Khavasi, A.: Analytical circuit model for periodic arrays of graphene disks. IEEE J. Quantum Electron. 51, 1–7 (2015)

    Article  Google Scholar 

  27. Biabanifard, M., et al.: Design and comparison of terahertz graphene antenna: ordinary dipole, fractal dipole, spiral, bow-tie and log-periodic. Eng. Technol. 2, 555585 (2018)

    Google Scholar 

  28. Biabanifard, M., Arsanjani, A., Abrishamian, M.S., Abbott, D.: Tunable terahertz graphene-based absorber design method based on a circuit model approach. IEEE Access 8, 70343–70354 (2020)

    Article  Google Scholar 

  29. Rezagholizadeh, E., Biabanifard, M., Borzooei, S.: Analytical design of tunable THz refractive index sensor for TE and TM modes using graphene disks. J. Phys. D Appl. Phys. 55, 295107 (2020)

    Article  Google Scholar 

  30. Chaharmahali, I., Soltani, M., Hoseini, M., Biabanifard, M.: Control of terahertz waves for TE and TM modes using graphene-based metamaterials. Opt. Eng. 59(4), 047101 (2020)

    Article  Google Scholar 

  31. Aghaee, T., Orouji, A.A.: Highly tunable multi-band THz absorber with circuit model representation using multi-bias scheme. Int. J. Numer. Model. Electron. Network Dev. Field. (2020). https://doi.org/10.1002/jnm.2777

    Article  Google Scholar 

  32. Tavakoli, F., Zarrabi, F.B., Saghaei, H.: Modeling and analysis of high-sensitivity refractive index sensors based on plasmonic absorbers with Fano response in the near-infrared spectral region. Appl. Opt. 58(20), 5404–5414 (2019)

    Article  Google Scholar 

  33. Naghizade, S., Saghaei, H.: Tunable graphene-on-insulator band-stop filter at the mid-infrared region. Opt. Quantum Electron. 52(4), 224 (2020). https://doi.org/10.1007/s11082-020-02350-4

    Article  Google Scholar 

  34. Saghaei, H., Elyasi, P., Karimzadeh, R.: Design, fabrication, and characterization of Mach-Zehnder interferometers. Photon. Nanostruct. Fundam. Appl. 37, 100733 (2019). https://doi.org/10.1016/j.photonics.2019.100733

    Article  Google Scholar 

  35. Khavasi, A.: Design of ultra-broadband graphene absorber using circuit theory. J. Opt. Soc. Am. B 32, 1941–1946 (2015)

    Article  Google Scholar 

  36. Borzooei, S., Rezagholizadeh, E., Biabanifard, M.: Graphene disks for frequency control of terahertz waves in broadband applications. J. Computat. Electron. 19, 759–772 (2020)

    Article  Google Scholar 

  37. Sang, T., et al.: Approaching total absorption of graphene strips using a c-Si subwavelength periodic membrane. Opt. Commun. 413, 255–260 (2018)

    Article  Google Scholar 

  38. Zhou, Q., et al.: Controlling enhanced absorption in graphene metamaterial. Opt. Commun. 413, 310–316 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Orouji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaee, T., Orouji, A.A. Dual-band terahertz absorber based on graphene periodic arrays of disks and ribbons: circuit model approach. J Comput Electron 20, 611–625 (2021). https://doi.org/10.1007/s10825-020-01581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01581-8

Keywords

Navigation