Skip to main content

Advertisement

Log in

Macrophage-derived Wnt signaling increases endothelial permeability during skeletal muscle injury

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The inflammatory response and the presence of macrophages are reported to be necessary for proper muscle regeneration. However, our understanding of the molecular mechanisms governing how macrophages signal to promote muscle regeneration is incomplete.

Methods and results

Here we conditionally deleted Wls, which is required for Wnt secretion, from macrophages and examined the impact on endothelial permeability following muscle injury. The expression of Wnt ligands and Wls was increased in the tibialis anterior (TA) of mice 2 days following BaCl2 injury. Loss of macrophage Wls inhibited the loss of endothelial barrier function, as measured by transendothelial resistance and Evans blue dye permeability assays. Interestingly, the blockade in endothelial permeability correlated with reduced VEGF levels and pretreatment of wild type endothelial cells with a VEGFR2 blocking antibody was sufficient to reduce endothelial permeability induced by stimulated macrophage supernatant. We also found that macrophage Wls-null TAs had myocytes with reduced cross-sectional area 7 day post-injury suggesting a delay in muscle regeneration.

Conclusion

Our results indicate that macrophage-derived Wnt signaling increases endothelial permeability in a VEGF-dependent fashion following muscle injury. Our findings implicate macrophages as a primary source of Wnt ligands following muscle injury and highlight the Wnt pathway as a therapeutic target following injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brown LF, Yeo K, Berse B, Yeo T, Senger R, Dvorak HF, Van De Water L. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med. 1992;176(5):1375–9.

    Article  Google Scholar 

  2. Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H. The role of vascular endothelial growth factor in wound healing. J Surg Res. 2009;153(2):347–58.

    Article  CAS  PubMed  Google Scholar 

  3. Muller WA. Mechanisms of leukocyte transendothelial migration. Ann Rev Path. 2011;6:323–44.

    Article  CAS  Google Scholar 

  4. Koh TJ, Byer SC, Pucci AM, Sisson TH. Mice deficient in plasminogen activator inhibitor-1 have improved skeletal muscle regeneration. Am J Physiol. 2005;289(1):C217–C223223.

    Article  CAS  Google Scholar 

  5. Lluis FJ, Roma M, Suelves M, Parra M, Aniorte G, Gallardo E, Illa I, Rodriguez L, Hughes SM, Carmeliet P, Roig M, Munoz-Canoves P. Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo. Blood. 2001;97(6):1703–11.

    Article  CAS  PubMed  Google Scholar 

  6. Lescaudron L, Peltekian E, Fontaine-Perus J, Paulin D, Zampieri M, Garcia L, Parrish E. Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant. Neuromuscul Discord. 1999;9(2):72–80.

    Article  CAS  Google Scholar 

  7. Martinez CO, McHale MJ, Wells JT, Ochoa O, Michalek JE, McManus LM, Shireman PK. Regulation of skeletal muscle regeneration by CCR2-activating chemokines is directly related to macrophage recruitment. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R832–R842842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hsieh PL, Rybalko V, Baker AB, Suggs LJ, Farrar RP. Recruitment and therapeutic application of macrophages in skeletal muscles after hind limb ischemia. J Vasc Surg. 2018;67(6):1908–20.

    Article  PubMed  Google Scholar 

  9. Teixeira CF, Zamuner SR, Zuliani JP, Fernandes CM, Cruz-Hofling MA, Fernandes I, Chaves F, Gutierrez JM. Neutrophils do not contribute to local tissue damage, but play a key role in skeletal muscle regeneration, in mice injected with Bothrops asper snake venom. Muscle Nerve. 2003;28(4):449–59.

    Article  CAS  PubMed  Google Scholar 

  10. Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J. 2011;25(1):358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Latroche C, Weiss-Gayet M, Muller L, Gitiaux C, Leblanc P, Liot S, Ben-Larbi S, Abou-Khalil R, Verger N, Bardot P, Magnan M, Chretien F, Mounier R, Germain S, Chazaud B. Coupling between myogenesis and angiogenesis during skeletal muscle regeneration is stimulated by restorative macrophages. Stem Cell Rep. 2017;9(6):2018–33.

    Article  CAS  Google Scholar 

  12. Banziger C, Soldini D, Schutt C, Zipperlen P, Hausmann G, Basler K. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell. 2006;125(3):509–22.

    Article  CAS  PubMed  Google Scholar 

  13. Bartscherer K, Pelte N, Ingelfinger D, Boutros M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell. 2006;125(3):523.

    Article  CAS  PubMed  Google Scholar 

  14. Goodman RM, Thombre S, Firtina Z, Gray D, Betts D, Roebuck J, Spana EP, Selva EM. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development. 2006;133(24):4901–11.

    Article  CAS  PubMed  Google Scholar 

  15. Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, Pei H, Chen L, Zheng JJ, Carroll TJ, Pollard JW, McMahon AP, Lang RA, Duffield JS. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci. 2010;107(9):4194–9.

    Article  CAS  PubMed  Google Scholar 

  16. Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA. A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell. 2008;2(1):50–9.

    Article  CAS  PubMed  Google Scholar 

  17. LeGrand F, Jones AE, Seale V, Scime A, Rudnicki MA. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell. 2009;4(6):535–47.

    Article  CAS  Google Scholar 

  18. Polesskaya A, Seale P, Rudnicki MA. Wnt Signaling induces the myogenic specification of resident CD45+ stem cells during muscle regeneration. Cell. 2003;113(7):841–52.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao P, Hoffman EP. Embryonic Myogenesis pathways in muscle regeneration. Dev Dyn. 2004;229(2):380–92.

    Article  CAS  PubMed  Google Scholar 

  20. vonMaltzahn J, Chang NC, Bentzinger CF, Rudnicki MA. Wnt signaling in myogenesis. Trends Cell Biol. 2012;22(11):602–9.

    Article  CAS  Google Scholar 

  21. Carpenter AC, Rao S, Wells JM, Campbell K, Lang R. Generation of mice with a conditional null allele for Wntless. Genesis. 2010;48:554–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP. Selective depletion of macrophages reveals distince, opposing roles during liver injury and repair. J Clin Invest. 2005;115(1):56–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stefater JA 3rd, Lewkowich I, Rao S, Mariggi G, Carpenter AC, Burr AR, Fan J, Ajima R, Molkentin JD, William BO, Wills-Karp M, Pollard JW, Yamaguchi T, Ferrara N, Gerhardt H, Lang RA. Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature. 2011;474(7352):511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ray A, Dittel BN. Isolation of mouse peritoneal cavity cells. J Vis Exp. 2010. https://doi.org/10.3791/1488.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Alexander JS. Analysis of endothelial barrier function in vitro. Methods Mol Biol. 2011;763:253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thepenier C, Pascal Q, Guguin A, Gayraud-Morel B, Cavaillon J, Tajbakhsh, Rocheteau P, Chretien F. Comparative study of injury models for studying muscle regeneration in mice. Plos One. 2016; https://doi.org/10.1371/journal.pone.0147198.

  27. M. Radu M, J. Chernoff J. An in vivo assay to test blood vessel permeability. J Vis Exp. 2013; https://doi.org/10.3791/50062.

  28. Hedgepeth CM, Conrad LJ, Zhang HC, Lee VM, Klein PS. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol. 1997;185(1):82–91.

    Article  CAS  PubMed  Google Scholar 

  29. Easwaran V, Lee SH, Inge L, Guo L, Goldbeck C, Garrett E, Wiesmann M, Garcia PD, Fuller JH, Chan V, Randazzo F, Gundel R, Warren RS, Escobedo J, Aukerman SL, Taylor RN, Fantl WJ. β-Catenin regulates vascular endothelial growth factor expression in colon cancer. Can Res. 2003;63:3145–53.

    CAS  Google Scholar 

  30. Weis S, Cheresh D. Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 2005;437:497–504. https://doi.org/10.1038/nature03987.

    Article  CAS  PubMed  Google Scholar 

  31. Tojais NF, Peghaire C, Franzl N, Larrieu-Lahargue F, Jaspard B, Reynaud A, Moreau C, Couffinhal T, Duplàa C, Dufourcq P. Frizzled7 controls vascular permeability through the Wnt-canonical pathway and cross-talk with endothelial cell junction complexes. Cardiovas Res. 2014;103(2):291–303.

    Article  Google Scholar 

  32. Daneman R, Agalliu D, Zhou L, Kuhnert F, Kou C, Barres BA. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. PNAS. 2009;106(2):641–6.

    Article  CAS  PubMed  Google Scholar 

  33. Liebner S, Corado M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M, Taketo MM, von Melchner H, Plate KH, Gerhardt H, Dejana E. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J of Cell Biol. 2008;183(3):409–417.

  34. Laksitorini MD, Yathindranath Y, Xiong W, Homback-Klonisch S, Miller DW. Modulation of Wnt/β-catenin signaling promotes blood-brain barrier phenotype in cultured brain endothelial cells. Sci Rep. 2018;9:19718.

    Article  Google Scholar 

  35. Lim RG, Quan C, Reyes-Ortiz AM, Lutz SE, Kedaigle AJ, Gipson TA, Wu J, Vatine GD, Stocksdale J, Casale M, Svedsen CN, Fraenkel E, Housman DE, Agalliu D, Thompson LM. Huntington’s Disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits. Cell Rep. 2017;19:1365–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Skaria T, Bachli E, Schoedon G. Wnt5A/Ryk signaling affects barrier function in human vascular endothelial cells. Cell Adh Migr. 2017;11(1):24–38.

    Article  CAS  PubMed  Google Scholar 

  37. Kim J, Kim J, Kim DW, Ha Y, Ihm MH, Kim H, Song K, Lee I. Wnt5a induces endothelial inflammation via beta-catenin-independent signaling. J Immunol. 2010;185:1274–82.

    Article  CAS  PubMed  Google Scholar 

  38. Gavard J. Endothelial permeability and VE-cadherin. Cell Ad Mig. 2013;7(6):465–71.

    Article  Google Scholar 

  39. Cantini M, Carraro U. Macrophage-released factor stimulates selectively myogenic cells in primary muscle culture. J Neuropathol Exp Neurol. 1995;54:121–8.

    Article  CAS  PubMed  Google Scholar 

  40. Cantini M, Giurisato E, Radu C, Tiozzo S, Pampinella F, Senigaglia D, Mazzoleni G, Vittiello L. Macrophage-secreted myogenic factors: a promising tool for greatly enhancing the proliferative capacity of myoblasts in vitro and in vivo. Neurologl Sci. 2002;23:189–94.

    Article  CAS  Google Scholar 

  41. Ochoa O, Sun D, Reyes-Reyna SM, Waite LL, Michalek JE, McManus LM, Shireman PK. Delayed angiogenesis and VEGF production in CCR2-/- mice during impaired skeletal muscle regeneration. Am J Phys Reg Integr Comput Phys. 2007;293(2):R651–R661661.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Carpenter.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tusavitz, S., Keoonela, S., Kalkstein, M. et al. Macrophage-derived Wnt signaling increases endothelial permeability during skeletal muscle injury. Inflamm. Res. 69, 1235–1244 (2020). https://doi.org/10.1007/s00011-020-01397-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01397-z

Keywords

Navigation