Skip to main content
Log in

Theoretical study on Janus graphene oxide membrane for water transport

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) membranes have received considerable attention owing to their outstanding water-permeation properties; however, the effect of the membrane’s microstructures (such as the distribution of oxidized and pristine regions) on the transport mechanism remains unclear. In this study, we performed molecular simulations to explore the permeation of a water-ethanol mixture using a new type of Janus GO membranes with different orientations of oxidized and pristine surfaces. The results indicate that the oxidized upper surface endows the GO membrane with considerable water-capture capability and the in-built oxidized interlayer promotes the effective vertical diffusion of water molecules. Consequently, using the optimized Janus GO membrane, infinite water selectivity and outstanding water flux (~40.9 kg·m−2·h−1) were achieved. This study contributes to explaining the role of oxidized regions in water permeation via GO membranes and suggests that Janus GO membranes could be used as potential candidates for water-ethanol separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335(6067): 442–444

    CAS  PubMed  Google Scholar 

  2. Wei N, Peng X, Xu Z. Understanding water permeation in graphene oxide membranes. ACS Applied Materials & Interfaces, 2014, 6(8): 5877–5883

    CAS  Google Scholar 

  3. Chen B, Jiang H, Liu X, Hu X. Water transport confined in graphene oxide channels through the rarefied effect. Physical Chemistry Chemical Physics, 2018, 20(15): 9780–9786

    CAS  PubMed  Google Scholar 

  4. Chen B, Jiang H, Liu H, Liu K, Liu X, Hu X. Thermal-driven flow inside graphene channels for water desalination. 2D Materials, 2019, 6(3): 035018

    CAS  Google Scholar 

  5. Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 2014, 343(6172): 752–754

    CAS  PubMed  Google Scholar 

  6. Chen B, Jiang H, Liu X, Hu X. Molecular insight into water desalination across multilayer graphene oxide membranes. ACS Applied Materials & Interfaces, 2017, 9(27): 22826–22836

    CAS  Google Scholar 

  7. Yuan Z, Benck J D, Eatmon Y, Blankschtein D, Strano M S. Stable, temperature-dependent gas mixture permeation and separation through suspended nanoporous single-layer graphene membranes. Nano Letters, 2018, 18(8): 5057–5069

    CAS  PubMed  Google Scholar 

  8. He G, Huang S, Villalobos L F, Zhao J, Mensi M, Oveisi E, Rezaei M, Agrawal K V. High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target. Energy & Environmental Science, 2019, 12(11): 3305–3312

    CAS  Google Scholar 

  9. Devanathan R, Chase-Woods D, Shin Y, Gotthold D W. Molecular dynamics simulations reveal that water diffusion between graphene oxide layers is slow. Scientific Reports, 2016, 6(1): 29484

    PubMed  PubMed Central  Google Scholar 

  10. Yang E, Ham M H, Park H B, Kim C M, Song J, Kim I S. Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer. Journal of Membrane Science, 2018, 547: 73–79

    CAS  Google Scholar 

  11. Zolezzi C, Ihle C F, Angulo C, Palma P, Palza H. Effect of the oxidation degree of graphene oxides on their adsorption, flocculation, and antibacterial behavior. Industrial & Engineering Chemistry Research, 2018, 57(46): 15722–15730

    CAS  Google Scholar 

  12. Balapanuru J, Manga K K, Fu W, Abdelwahab I, Zhou G, Li M, Lu H, Loh K P. Desalination properties of a free-standing, partially oxidized few-layer graphene membrane. Desalination, 2019, 451: 72–80

    CAS  Google Scholar 

  13. Wei Y, Zhang Y, Gao X, Ma Z, Wang X, Gao C. Multilayered graphene oxide membranes for water treatment: a review. Carbon, 2018, 139: 964–981

    CAS  Google Scholar 

  14. Lee B, Suh D W, Hong S P, Yoon J. A surface-modified EDTA-reduced graphene oxide membrane for nanofiltration and antibiofouling prepared by plasma post-treatment. Environmental Science. Nano, 2019, 6(7): 2292–2298

    CAS  Google Scholar 

  15. Ban S, Xie J, Wang Y, Jing B, Liu B, Zhou H. Insight into the nanoscale mechanism of rapid H2O transport within a graphene oxide membrane: impact of oxygen functional group clustering. ACS Applied Materials & Interfaces, 2016, 8(1): 321–332

    CAS  Google Scholar 

  16. Willcox J A, Kim H J. Molecular dynamics study of water flow across multiple layers of pristine, oxidized, and mixed regions of graphene oxide. ACS Nano, 2017, 11(2): 2187–2193

    CAS  PubMed  Google Scholar 

  17. Chen B, Jiang H, Liu X, Hu X. Observation and analysis of water transport through graphene oxide interlamination. Journal of Physical Chemistry C, 2017, 121(2): 1321–1328

    CAS  Google Scholar 

  18. Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition in English, 2014, 53(27): 6929–6932

    CAS  Google Scholar 

  19. Yang J Z, Liu Q L, Wang H T. Analyzing adsorption and diffusion behaviors of ethanol/water through silicalite membranes by molecular simulation. Journal of Membrane Science, 2007, 291(1): 1–9

    CAS  Google Scholar 

  20. Lee W, Kang P K, Kim A S, Lee S. Impact of surface porosity on water flux and structural parameter in forward osmosis. Desalination, 2018, 439: 46–57

    CAS  Google Scholar 

  21. David C T, Grossman J C. Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608

    Google Scholar 

  22. Liu Q, Wu Y, Wang X, Liu G, Zhu Y, Tu Y, Lu X, Jin W. Molecular dynamics simulation of water-ethanol separation through monolayer graphene oxide membranes: significant role of O/C ratio and pore size. Separation and Purification Technology, 2019, 224: 219–226

    CAS  Google Scholar 

  23. Peng P, Shi B, Lan Y. A review of membrane materials for ethanol recovery by pervaporation. Separation Science and Technology, 2010, 46(2): 234–246

    Google Scholar 

  24. Khoonsap S, Rugmai S, Hung W S, Lee K R, Klinsrisuk S, Amnuaypanich S. Promoting permeability-selectivity anti-trade-off behavior in polyvinyl alcohol (PVA) nanocomposite membranes. Journal of Membrane Science, 2017, 544: 287–296

    CAS  Google Scholar 

  25. Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 1990, 92(1): 508–517

    CAS  Google Scholar 

  26. Wang Y, He Z, Gupta K M, Shi Q, Lu R. Molecular dynamics study on water desalination through functionalized nanoporous graphene. Carbon, 2017, 116: 120–127

    CAS  Google Scholar 

  27. Xu X L, Lin F W, Du Y, Zhang X, Wu J, Xu Z K. Graphene oxide nanofiltration membranes stabilized by cationic porphyrin for high salt rejection. ACS Applied Materials & Interfaces, 2016, 8(20): 12588–12593

    CAS  Google Scholar 

  28. Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications—overview with details on alkane and benzene compounds. Journal of Physical Chemistry B, 1998, 102(38): 7338–7364

    CAS  Google Scholar 

  29. Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 2008, 4(3): 435–447

    CAS  PubMed  Google Scholar 

  30. Yang X, Yang X, Liu S. Molecular dynamics simulation of water transport through graphene-based nanopores: flow behavior and structure characteristics. Chinese Journal of Chemical Engineering, 2015, 23(10): 1587–1592

    CAS  Google Scholar 

  31. Liu Q, Gupta K M, Xu Q, Liu G, Jin W. Gas permeation through double-layer graphene oxide membranes: the role of interlayer distance and pore offset. Separation and Purification Technology, 2019, 209: 419–425

    CAS  Google Scholar 

  32. Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L. Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 1983, 79(2): 926–935

    CAS  Google Scholar 

  33. Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 1996, 118(45): 11225–11236

    CAS  Google Scholar 

  34. Wennberg C L, Murtola T, Páll S, Abraham M J, Hess B, Lindahl E. Direct-space corrections enable fast and accurate lorentz-berthelot combination rule lennard-jones lattice summation. Journal of Chemical Theory and Computation, 2015, 11(12): 5737–5746

    CAS  PubMed  Google Scholar 

  35. Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G. A smooth particle mesh Ewald method. Journal of Chemical Physics, 1995, 103(19): 8577–8593

    CAS  Google Scholar 

  36. Vane L M. Review: membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2019, 94(2): 343–365

    CAS  Google Scholar 

  37. Gui T, Zhang F, Li Y Q, Cui X, Wu X W, Zhu M H, Hu N, Chen X S, Kita H, Kondo M. Scale-up of NaA zeolite membranes using reusable stainless steel tubes for dehydration in an industrial plant. Journal of Membrane Science, 2019, 583: 180–189

    CAS  Google Scholar 

  38. Zhao D, Zhao J, Ji Y, Liu G, Liu S, Jin W. Facilitated water-selective permeation via PEGylation of graphene oxide membrane. Journal of Membrane Science, 2018, 567: 311–320

    CAS  Google Scholar 

  39. Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition, 2014, 53(27): 6929–6932

    CAS  PubMed  Google Scholar 

  40. Chang X, Zhu L, Xue Q, Li X, Guo T, Li X, Ma M. Charge controlled switchable CO2/N2 separation for g-C10N9 membrane: insights from molecular dynamics simulations. Journal of CO2 Utilization, 2018, 26: 294–301

    CAS  Google Scholar 

  41. Obst S, Bradaczek H. Molecular dynamics study of the structure and dynamics of the hydration shell of alkaline and alkaline-earth metal cations. Journal of Physical Chemistry, 1996, 100(39): 15677–15687

    CAS  Google Scholar 

  42. Chen B, Jiang H, Liu X, Hu X. Observation and analysis of water transport through graphene oxide interlamination. Journal of Physical Chemistry C, 2017, 121(2): 1321–1328

    CAS  Google Scholar 

  43. Ye H, Zhang H, Zheng Y, Zhang Z. Nanoconfinement induced anomalous water diffusion inside carbon nanotubes. Microfluidics and Nanofluidics, 2011, 10(6): 1359–1364

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21922805, 21776125). We are grateful to the High-Performance Computing Center of Nanjing Tech University for supporting the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongping Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Chen, M., Mao, Y. et al. Theoretical study on Janus graphene oxide membrane for water transport. Front. Chem. Sci. Eng. 15, 913–921 (2021). https://doi.org/10.1007/s11705-020-1954-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1954-5

Keywords

Navigation