Skip to main content
Log in

Runaway Electrons Emitted by Electron Avalanches in Nanosecond Discharges in Air

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Nanosecond electric discharges in atmospheric air at high overvoltages are considered. Plasma channels and diffuse plasma glow simultaneously exist in these discharges. Channels are created by subnanosecond streamers formed in the cathode region. Diffuse glow is caused by runaway electrons emitted by electron avalanche heads. The necessary electric field enhancement is created due to the plasma configuration in the avalanche head and body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Yu. I. Bichkov, A. M. Iskol’dskij, and G. A. Mesyats, “On the Increase of Spark Current during Pulse Breakdown of Air Gaps in Nanosecond Time Range,” in Proceedings of the Eighth International Conference on Phenomena in Ionized Gases, Vienna,1967, p. 210.

  2. G. A. Mesyats, Yu. I. Bychkov, and V. V. Kremnev, “Pulsed Nanosecond Electric Discharges in Gases,” Sov. Phys. Usp. 15, 282 (1972). https://doi.org/10.1070/PU1972v015n03ABEH004969

    Article  ADS  Google Scholar 

  3. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases (Nauka, Moscow, 1991).

    Google Scholar 

  4. H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964).

    Google Scholar 

  5. E. M. Baselyan and Yu. P. Raizer, Spark Discharge (CRC, Boca Raton, 1997).

    Google Scholar 

  6. Yu. L. Stankevich and V. G. Kalinin, “Fast Electrons and X-ray Radiation in the Initial Stage of Impulse Spark Discharge Development in the Air,” Dokl. Akad. Nauk SSSR Vol. 177, 72 (1967).

    Google Scholar 

  7. A. V. Gurevich, “On the Theory of Runaway Electrons,” Sov. Phys. JETP 12, 904 (1961).

    MathSciNet  MATH  Google Scholar 

  8. L. P. Babich, High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment, and Natural Phenomena. ISTC Science and Technology Series, Vol. 2 (Futurepast, Arlington, 2003).

    Google Scholar 

  9. V. F. Tarasenko, “Runaway Electrons in Diffuse Gas Discharges,” Plasma Sources Sci. Technol. 29, 023001 (2020). https://doi.org/10.1088/1361-6595/ab5c57

    Article  Google Scholar 

  10. A. V. Gurevich, G. A. Mesyats, K. P. Zybin, M. I. Yalandin, A. G. Reutova, V. G. Shpak, and S. A. Shunailov, “Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field,” Phys. Rev. Lett. 109, 085002 (2012). https://doi.org/10.1103/PhysRevLett.109.085002

    Article  ADS  Google Scholar 

  11. E. V. Oreshkin, S. A. Barengolts, S. A. Chaikovsky, and V. I. Oreshkin, “Simulation of a Runaway Electron Avalanche Developing in an Atmospheric Pressure Air Discharge” Phys. Plasmas 22, 123505 (2015). https://doi.org/10.1063/1.4936826

    Article  ADS  Google Scholar 

  12. G. A. Mesyats, M. I. Yalandin, N. M. Zubarev, A. G. Sadykova, K. A. Sharypov, V. G. Shpak, S. A. Shunailov, M. R. Ulmaskulov, O. V. Zubareva, A. V. Kozyrev, and N. S. Semeniuk,” How Short is the Runaway Electron Flow in an Air Electrode Gap?,” Appl. Phys. Lett. 116, 063501 (2020). https://doi.org/10.1063/1.5143486

    Article  ADS  Google Scholar 

  13. G. A. Mesyats, “On a Source of Outgoing Electrons in a Pulsed Gas Discharge,” JETP. Lett. 85, 109 (2007). https://doi.org/10.1134/S0021364007020038

    Article  ADS  Google Scholar 

  14. D. Levko, “Comparison of Mechanisms of the Plasma Generation by Nanosecond Discharge at Extremely High Overvoltage,” J. Appl. Phys. 124, 163302 (2018). https://doi.org/10.1063/1.5052000

    Article  ADS  Google Scholar 

  15. G. A. Mesyats and M. I. Yalandin, “Nanosecond Volume Discharge in Air Initiated by a Picosecond Runaway Electron Beam,” Phys. Usp. 62, 699 (2019). https://doi.org/10.3367/UFNe.2018.06.038354

    Article  ADS  Google Scholar 

  16. V. V. Kremnev and Yu. A. Kurbatov, ”X-rays from a Gas Discharge in a Strong Electric Field,” Sov. Phys. Tech. Phys. 17, 626 (1972).

    ADS  Google Scholar 

  17. W. W. Byszewsky and G. Reinhold, “X-ray Diagnostics of Runaway Electrons in Fast Gas Discharges,” Phys. Rev. A 26, 2826 (1982). https://doi.org/10.1103/PhysRevA.26.2826

    Article  ADS  Google Scholar 

  18. E. E. Kunhardt and W. W. Byszewski, ”Development of Overvoltage Breakdown at High Gas Pressure,” Phys. Rev. A 21, 2069 (1980). https://doi.org/10.1103/PhysRevA.21.2069

    Article  ADS  Google Scholar 

  19. H. Schlumbohm, “Stoßionisierungskoeffizient α, Mittlere Elektronenenergien und die Beweglichkeit von Elektronen in Gasen,” Z. Phys. 184. 492 (1965).

    Article  ADS  Google Scholar 

  20. V. V. Kremnev and G. A. Mesyats, “Growth of Nanosecond Pulsed Discharge in Gas with One-Electron Initiation,” J. Appl. Mech. Tech. Phys. 12, 33 (1971). https://doi.org/10.1007/BF00853979

    Article  ADS  Google Scholar 

  21. E. D. Lozanskii and O. B. Firsov, Spark Theory (Atomizdat, Moscow, 1975).

    Google Scholar 

  22. G. A. Mesyats, Pulsed Power (Kluwer, New York, 2004).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-79-30086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Mesyats.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesyats, G.A., Zubarev, N.M. & Vasenina, I.V. Runaway Electrons Emitted by Electron Avalanches in Nanosecond Discharges in Air. Bull. Lebedev Phys. Inst. 47, 209–212 (2020). https://doi.org/10.3103/S1068335620070052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335620070052

Keywords:

Navigation