Skip to main content
Log in

Physical Conditions in Coronal Holes

  • Published:
Astrophysics Aims and scope

The physical conditions in the chromosphere of polar and equatorial coronal holes in the decay phase of the 24-th solar activity cycle are studied. Models of the chromosphere are constructed based on the intensities of the HeI 10830 Å and Hα lines and using a non-LTE program. The calculations showed that the temperature in equatorial coronal holes is similar to that of polar coronal holes. The temperature in coronal holes is lower than that of the unperturbed chromosphere and increases depending on height in the chromosphere. The difference between the atmospheres of coronal holes and the quiet Sun begins at the level of the upper photosphere- lower chromosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Zirker, Rev. Geophys. Space Phys. 15, 257 (1977).

    Article  ADS  Google Scholar 

  2. S. R. Cranmer, Space Sci. Rev. 101, 229 (2002).

    Article  ADS  Google Scholar 

  3. A. J. Hundhausen, in: Coronal Holes and High Speed Wind Streams; Ed. J. Zirker, Colorado Univ. Press, Boulder, CO, 225 (1977).

  4. R. von Steiger and T. H. Zurbuchen, J. Geophys. Res. 116, A01105 (2011).

    ADS  Google Scholar 

  5. B. J. J. Bromage, D. Alexander, A. Breen, et al., Solar Phys. 193, 181 (2000).

    Article  ADS  Google Scholar 

  6. G. de Toma, S. E. Gibson, B. A. Emery, et al., in SOHO 23: Understanding a Peculiar Solar Minimum, ASP Conf. Ser. 428; Eds., S. R. Cranmer, J. T. Hoeksema, and J. L. Kohl, San Francisco, CA: ASP, 217 (2010).

  7. L. Zhao and L. A. Fisk, Solar Phys. 274, 379 (2011).

    Article  ADS  Google Scholar 

  8. K. L. Harvey, in Proc. 8th International Solar Wind Conference, AIP Conf. Ser. 382, Eds. D. Winterhalter, et al., Melville, NY: AIP, 9 (1996).

  9. K. L. Harvey and F. Recely, Solar Phys. 211, 31 (2002).

    Article  ADS  Google Scholar 

  10. L. K. Harra and A. C. Sterling, Astrophys. J. 561, L215 (2001).

    Article  ADS  Google Scholar 

  11. T. A. Howard and R. A. Harrison, Solar Phys. 219, 315 (2004).

    Article  ADS  Google Scholar 

  12. M. Waldmeier, Solar Phys. 70, 251 (1981).

    Article  ADS  Google Scholar 

  13. V. Abramenko, V. Yurchyshyn, J. Linker, et al., Astrophys. J. 712, 813 (2010).

    Article  ADS  Google Scholar 

  14. S. E. Gibson, J. U. Kozyra, G. de Toma, et al., J. Geophys. Res. (Space Physics) 114, A09105 (2009).

    ADS  Google Scholar 

  15. R. A. Harrison, E. C. Sawyer, M. K. Carter, et al., Solar Phys. 162, 233 (1995).

    Article  ADS  Google Scholar 

  16. K. Stucki, S. K. Solanki, C. D. Pike, et al., Astron. Astrophys. 381, 653 (2002).

    Article  ADS  Google Scholar 

  17. J. Harvey, A. S. Krieger, A. F. Timothy, et al., Osserv. Mem. Oss. Astrofis. Arcetri, 104, 50 (1975).

    Google Scholar 

  18. S. R. Cranmer, Living Rev. Solar Phys. 6, 3 (2009).

    Article  ADS  Google Scholar 

  19. V. N. Borovik, M. S. Kurbanov, M. A. Livshits, et al., Sov. Astron. 34, 522 (1990).

    ADS  Google Scholar 

  20. R. Esser and S. R. Habbal, in Cosmic wind and the heliosphere, Eds. J. R. Jokipii, C. P. Sonett, and M. S. Giampapa, University of Arizona, Tucson, 297 (1997).

  21. V. N. Obridko and A. A. Solov’ev, Astron. Rep. 55, 1144 (2011).

    Article  ADS  Google Scholar 

  22. E. A. Baranovskii, O. S. Gopasyuk, and N. I. Shtertser, Astrophysics 62, 226 (2019).

    Article  ADS  Google Scholar 

  23. J. R. Lemen, A. M. Title, D. J. Akin, et al., Solar Phys. 275, 17 (2012).

    Article  ADS  Google Scholar 

  24. T. Rotter, A. M. Veronig, M. Temmer, et al., Solar Phys. 281, 793 (2012).

    Article  ADS  Google Scholar 

  25. M. A. Reiss, M. Temmer, A. M. Veronig, et al., Space Weather 14, 495 (2016).

    Article  ADS  Google Scholar 

  26. E. A. Illarionov and A. G. Tlatov, Mon. Not. Roy. Astron. Soc. 481, 5014 (2018).

    Article  ADS  Google Scholar 

  27. N. N. Stepanyan, E. V. Dolgopolova, A. I. Elizarov, et al., Izv. Krym. astrofiz. obs. 96, 171 (2000).

    Google Scholar 

  28. O. A. Andreeva, Z. S. Akhmetov, V. M. Malashchuk, et al., Geomagnetism and Aeronomy 58, 916 (2018).

    Article  ADS  Google Scholar 

  29. E. H. Avrett and R. Loeser, SAO, Special Report, 303 (1969).

  30. J. E. Vernazza, E. H. Avrett, and R. Loeser, Astrophys. J. Suppl. Ser. 45, 635 (1981).

    Article  ADS  Google Scholar 

  31. F. Chiuderi Drago, E. Landi, A. Fludra, et al., Astron. Astrophys. 348, 261 (1999).

    ADS  Google Scholar 

  32. G. Del Zanna and B. J. I. Bromage, J. Geophys. Res. 104, A059753 (1999).

    Google Scholar 

  33. L. Zhao and E. Landi, Astrophys. J. 781, 110 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Gopasyuk.

Additional information

Translated from Astrofizika, Vol. 63, No. 3, pp. 479-488 (August 2020)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopasyuk, O.S., Baranovskii, E.A., Tarashchuk, V.P. et al. Physical Conditions in Coronal Holes. Astrophysics 63, 421–429 (2020). https://doi.org/10.1007/s10511-020-09646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-020-09646-z

Keywords

Navigation