Skip to main content
Log in

Two Phases of Solar Flares and a Stochastic Mechanism for Acceleration of Electrons and Protons

  • Published:
Astrophysics Aims and scope

The hypothesis of two phases of charged particle acceleration in solar flares is well known, with subrelativistic electrons accelerated in the first phase and relativistic electrons and protons in the second. Both phases are distinguished in the solar proton events and their parent flares of December 26, 2001 (M7.1), November 2, 2003 (X8.3), and August 9, 2011 (X6.9), while in the interplanetary space only electrons were observed from the first phase and electrons and protons from the second. The temporal profiles of the electrons and protons from the second phase are similar; hence, it is concluded that the relativistic electrons and protons observed in the interplanetary space are predominantly accelerated in flares, rather than in the shock front of a coronal mass ejection. Most likely a stochastic acceleration mechanism is realized in flares where protons and electrons gain energy in many elementary events over the entire duration of the flare which lasts much longer than an elementary event. To ensure consistency of a stochastic acceleration process with the existence of two phases in solar flares it is necessary to consider gyrosynchronous radiative electron losses in the second phase which can be neglected in the first phase. The energy of the accelerated protons in the first phase is small for their detection in processes taking place on the sun, but in the second phase it may be sufficient to produce gamma lines, both nuclear and from pion decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Struminsky, Bulletin of the Russian Academy of Sciences. Physics 83, 538 (2019).

    Google Scholar 

  2. I. Yu. Grigor’eva and A. B. Struminsky, Proc. XXII All-Russian Conf. on Solar Physics “Solar and Solar-earth Physics-2018,” A. V. Stepanov and Yu. A. Nagovitsyin, eds., GAO RAN, St. Petersburg 123 (2018).

  3. I. Yu. Grigor’eva, A. B. Struminsky, Proc. XXII All-Russian Conf. on Solar Physics “Solar and Solar-earth Physics-2018,” A. V. Stepanov and Yu. A. Nagovitsyin, eds.GAO RAN, St. Petersburg 127 (2018).

  4. J. P. Wild, S. F. Smerd, and A. A. Weiss, Ann. Rev. Astron. Astrophys. 1, 291 (1963).

    Article  ADS  Google Scholar 

  5. R. Ramaty, S. A. Colgate, G. A. Dulk, et al., Proc. of the 2nd SKYLAB Workshop on Solar Flares. 117 (1978).

  6. A. Y. Shih, R. P. Lin, and D. M. Smith, Astrophys. J. 698, 152 (2009).

    Article  ADS  Google Scholar 

  7. A. B. Struminsky, I. Yu. Grigor’eva, Yu. I. Logachev, et al., Plasma Phys. Rep. 46, 174 (2020).

    Article  ADS  Google Scholar 

  8. A. Benz, Solar Phys. 96, 357 (1985).

    Article  ADS  Google Scholar 

  9. L. Vlahos, Solar Phys. 121, 431 (1989).

    Article  ADS  Google Scholar 

  10. J. A. Miller, P. J. Cargill, A. Emslie, et al., J. Geophys. Res. 102, 14631 (1997).

    Article  ADS  Google Scholar 

  11. Z. Svestka, Solar Phys. 13, 471 (1970).

    Article  ADS  Google Scholar 

  12. V. V. Grechnev and A. A. Kochanov, Solar Phys. 291, 3705 (2016).

    Article  ADS  Google Scholar 

  13. V. V. Grechnev, A. M. Uralov, V. I. Kiselev, et al., Solar Phys. 292, 3 (2017).

    Article  ADS  Google Scholar 

  14. V. V. Grechnev, V. I. Kiselev, A. M. Uralov, et al., Solar Phys. 292, 102 (2017).

    Article  ADS  Google Scholar 

  15. A. B. Struminsky, Geomagnetism Aeronomy 53, 843 (2013).

    Article  ADS  Google Scholar 

  16. I. N. Sharykin, A. B. Struminsky, and I. V. Zimovets, Astron. Lett. 41, 53 (2015).

    Article  ADS  Google Scholar 

  17. E. W. Cliver, S. W. Kahler, M. A. Shea, et al., Astrophys. J. 260, 362 (1982).

    Article  ADS  Google Scholar 

  18. A. B. Struminsky and I. V. Zimovets, 21st ECRS, Kosice, Slovakia, Slovak Academy of Sciences, 237 (2009).

  19. D. V. Reames, Astrophys. J. 706, 844 (2009).

    Article  ADS  Google Scholar 

  20. E. I. Daibog, V. G. Stolpovskii, V. V. Mel’nikov, et al., Soviet Astron. Lett. 15, 432 (1989).

    ADS  Google Scholar 

  21. L. G. Kocharov, G. A. Kovaltsov, G. E. Kocharov, et al., Solar Phys. 150, 267 (1994).

    Article  ADS  Google Scholar 

  22. V. V. Akimov, P. Ambro•, Belov A.V., et al., Solar Phys. 166, 107 (1996).

    Article  ADS  Google Scholar 

  23. M. J. Aschwanden, Space Sci. Rev. 171, 3 (2012).

    Article  ADS  Google Scholar 

  24. S. W. Kahler, Space Sci. Rev. 129, 359 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Struminsky.

Additional information

Translated from Astrofizika, Vol. 63, No. 3, pp. 437-449 (August 2020)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struminsky, A.B., Grigorieva, I.Y., Logachev, Y.I. et al. Two Phases of Solar Flares and a Stochastic Mechanism for Acceleration of Electrons and Protons. Astrophysics 63, 388–398 (2020). https://doi.org/10.1007/s10511-020-09643-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-020-09643-2

Keywords

Navigation