Skip to main content
Log in

Compact and highly sensitive temperature sensor established with HSC-SPR embedded in a polymer

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A surface plasmon resonance fiber sensor on the basis of hollow silica capillary (HSC) is theoretically proposed and experimentally demonstrated. Numerical analysis indicates that the structure of multimode–capillary–multimode fiber (MMF–HSC–MMF) possesses high spectral resolution and sensitivity due to the existence of capillary stomata. A 55-nm-thick gold-coated HSC is experimentally implemented, with an average refractive index (RI) sensitivity of 6352.16 nm/RIU in RI range of 1.396–1.423. Taking advantage of high thermal coefficient of PDMS, the gold-coated section thoroughly covered with PDMS is especially sensitive to temperature changes. When monitoring the temperature variations of 5–80 °C, the sensor shows high sensitivity (− 2.067 nm/°C) and high linearity (R2 = 0.9981).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Ma, J. Ju, L. Jin, W. Jin, D.N. Wang, Fiber-tip micro-cavity for temperature and transverse load sensing. Opt. Express 19, 12418–12426 (2011)

    ADS  Google Scholar 

  2. Y.G. Han, S.B. Lee, C.S. Kim, J.U. Kang, U.C. Paek, Y. Chung, Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities. Opt. Express 11, 476–481 (2003)

    ADS  Google Scholar 

  3. G. Tang, R. Wang, W. Zhou, M. Yang, M. Wu, X. Xu, A highly sensitive temperature sensor based on power changes of fiber bragg grating pairs. IEEE Photonics Technol. Lett. 27, 1806–1808 (2015)

    ADS  Google Scholar 

  4. P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, J. Xiong, Temperature-compensated fiber-optic Fabry–Perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application. Sens. Actuators B Chem. 244, 226–232 (2017)

    Google Scholar 

  5. L. Jiang, J. Yang, S. Wang, B. Li, M. Wang, Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett. 36, 3753–3755 (2011)

    ADS  Google Scholar 

  6. A.N. Starodumov, L.A. Zenteno, D. Monzon, Fiber Sagnac interferometer temperature sensor. Appl. Phys. Lett. 70, 19–21 (1997)

    ADS  Google Scholar 

  7. C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu, H. Mu, P.K. Chu, A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance. Opt. Commun. 359, 378–382 (2016)

    ADS  Google Scholar 

  8. S. Zhang, J. Li, S. Li, Q. Liu, Y. Liu, Z. Zhang, Y. Wang, A tunable single-polarization photonic crystal fiber filter based on surface plasmon resonance. Appl. Phys. B 124, 112 (2018)

    ADS  Google Scholar 

  9. Y. Peng, J. Hou, Y. Zhang, Z. Huang, R. Xiao, Q. Lu, Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber. Opt. Lett. 38, 263–265 (2013)

    ADS  Google Scholar 

  10. X.C. Yang, Y. Lu, B.L. Liu, J.Q. Yao, Temperature sensor based on photonic crystal fiber filled with liquid and silver nanowires. IEEE Photon. J. 8, 1–9 (2016)

    Google Scholar 

  11. Y. Zhao, Z.Q. Deng, H.F. Hu, Fiber-optic SPR sensor for temperature measurement. IEEE Trans. Instrum. Meas. 64, 3099–3104 (2015)

    Google Scholar 

  12. J.S.V. Gonzalez, D.M. Hernandez, F.M. Pinon, D.A.M. Arrioja, I.H. Romano, Surface plasmon resonance-based optical fiber embedded in PDMS for temperature sensing. IEEE J. Sel. Top. Quantum Electron. 23, 126–131 (2016). (article id. 4601306)

    Google Scholar 

  13. W. Yong, H. Qing, Z. Wenjie, Y. Minghong, L. Elfed, Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film. Opt. Express 26, 1910–1917 (2018)

    Google Scholar 

  14. L. Coelho, J.M.M.M.D. Almeida, J.L. Santos, R.A.S. Ferreira, D. Viegas, Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres. Plasmonics 10, 319–327 (2015)

    Google Scholar 

  15. W. Zhu, Q. Huang, Y. Wang, E. Lewis, M. Yang, Enhanced sensitivity of hetero-core structure SPR temperature sensor based on local microstructures. in CLEO Pacific Rim Conference, paper Tu2L.2 (2018).

  16. Z.W. Ding, T.T. Lang, Y. Wan, C.L. Zhao, Surface plasmon resonance refractive index sensor based on tapered coreless optical fiber structure. J. Lightwave Technol. 35, 4734–4739 (2017)

    ADS  Google Scholar 

  17. Z.D. Zhu, L. Liu, Z.H. Liu, Y. Zhang, Y.X. Zhang, Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Opt. Lett. 42, 2948–2951 (2017)

    ADS  Google Scholar 

  18. D. Fuard, T.T. Chevolleau, S. Decossas, P. Tracqui, P. Schiavone, Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron. Eng. 85, 1289–1293 (2008)

    Google Scholar 

  19. Z. Cai, W. Qiu, G. Shao, W. Wang, A new fabrication method for all-PDMS waveguides. Sens. Actuators A Phys. 204, 44–47 (2013)

    Google Scholar 

  20. M. Skorobogatiy, Microstructured and photonic bandgap fibers for applications in the resonant Bio- and Chemical sensors. J. Sens. 524237, 1–20 (2009)

    Google Scholar 

  21. A. Grazia, M. Riccardo, F.L. Ciaccheri, Evanescent wave absorption spectroscopy by means of bi-tapered multimode optical fibers. Appl. Spectrosc. 52, 546–551 (1998)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the project of the National Natural Science Foundation of China (no. 61775065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Xia, L., Xia, J. et al. Compact and highly sensitive temperature sensor established with HSC-SPR embedded in a polymer. Appl. Phys. B 126, 156 (2020). https://doi.org/10.1007/s00340-020-07505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07505-5

Navigation