Skip to main content
Log in

Structural, optical and magnetic characterization of nanorod-shaped polycrystalline Zn1−xMnxO films synthesized using sol–gel technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural, optical and magnetic properties of nanorod structured polycrystalline Zn1−xMnxO3 films \(\left( {0 \le x \le 0.1} \right)\) grown on glass substrate using Sol–Gel technique have been investigated. X-ray diffraction (XRD) analysis reveals average grain sizes from 15 to 25 nm. There was gradual increase in both the crystallite size and lattice constant with increase in Mn content up to 0.2%, and then decrease of them with further increase in Mn content. The same result has been confirmed by SEM experiments. It has been revealed that the band gap value of Zn1−xMnxO film decreases from 3.34 to 2.97 eV with an increase in Mn concentration from x = 0.0 to 0.1, which is in agreement with the previously reported results. The studies of the magnetization and magnetic resonance of Zn1−xMnxO films revealed the presence of the paramagnetic state without any magnetic ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2, 673 (2003)

    Article  ADS  Google Scholar 

  2. T.N. Soitah, Y. Chunhui, S. Liang, Sci. Adv. Mater. 2, 534 (2010)

    Article  Google Scholar 

  3. W.E. Mahmoud, A.A. Al-Ghamdi, Opt. Laser Technol. 42, 1134 (2010)

    Article  ADS  Google Scholar 

  4. Q. Xiang, G. Meng, Y. Zhang, J. Xu, P. Xu, Q. Pan, W. Yu, Sens. Actuators, B 143, 635 (2010)

    Article  Google Scholar 

  5. R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng, J. Ding, Powder Technol. 189, 426 (2009)

    Article  Google Scholar 

  6. J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)

    Article  ADS  Google Scholar 

  7. T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett. 75, 3366 (1999)

    Article  ADS  Google Scholar 

  8. T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, H. Koinuma, Appl. Phys. Lett. 78, 958 (2001)

    Article  ADS  Google Scholar 

  9. S.S. Kim, J.H. Moon, B.T. Lee, O.S. Song, J.H. Je, J. Appl. Phys. 95, 454 (2004)

    Article  ADS  Google Scholar 

  10. A. Tiwari, C. Jin, A. Kvit, D. Kumar, J.F. Muth, J. Narayan, Solid State Commun. 121, 371 (2002)

    Article  ADS  Google Scholar 

  11. C.N.R. Rao, F.L. Deepak, J. Mater. Chem. 15, 573 (2005)

    Article  Google Scholar 

  12. P. Petrou, R. Singh, D.E. Brodie, Appl. Phys. Lett. 35, 930 (1979)

    Article  ADS  Google Scholar 

  13. A.P. Roth, D.F. Williams, J. Appl. Phys. 52, 6685 (1981)

    Article  ADS  Google Scholar 

  14. X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee, Appl. Phys. Lett. 83, 1875 (2003)

    Article  ADS  Google Scholar 

  15. P. Nunes, E. Fortunato, R. Martins, Thin Solid Films 383, 277 (2001)

    Article  ADS  Google Scholar 

  16. Y.F. Lu, H.Q. Ni, Z.H. Mai, Z.M. Ren, J. Appl. Phys. 88, 498 (2000)

    Article  ADS  Google Scholar 

  17. A.E.J. Gonzalez, J.A.S. Urueta, R.S. Parra, J. Cryst. Growth 192, 430 (1998)

    Article  ADS  Google Scholar 

  18. Y. Chang, P. Wang, Q. Sun, Y. Wang, Y. Long, J. Nanomater. 16, 96 (2011)

    Google Scholar 

  19. M.K. Lima, D.M. Fernandes, M.F. Silva, M.L. Baesso, A.M. Neto, G.R. Morais, C.V. Nakamura, A.O. Caleare, A.A.W. Hechenleitner, E.A.G. Pineda, J. Sol-Gel. Sci. Technol. 72, 301 (2014)

    Article  Google Scholar 

  20. J. Fan, F. Jiang, Z. Quan, X. Qing, X. Xu, Mater. Res. Bull. 47, 3344 (2012)

    Article  Google Scholar 

  21. Y.M. Kim, M. Yoon, I.W. Park, Y.J. Park, J.H. Lyou, Solid State Commun. 129, 175 (2004)

    Article  ADS  Google Scholar 

  22. J.B. Wang, G.J. Huang, X.L. Zhong, L.Z. Sun, Y.C. Zhou, Appl. Physics Letters 88, 252502 (2006)

    Article  ADS  Google Scholar 

  23. A. Goktas, I.H. Mutlu, Y. Yamada, E. Celik, J. Alloys Compd. 553, 259 (2013)

    Article  Google Scholar 

  24. R. Karmakar, S.K. Neogi, N. Midya, A. Banerjee, S. Bandyopadhyay, J. Mater. Sci. Mater. Electron. 27, 6371 (2016)

    Article  Google Scholar 

  25. B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, G. Schütz, P.A. van Aken, E. Goering, B. Baretzky, Phys. Rev. B 79, 205206 (2009)

    Article  ADS  Google Scholar 

  26. J.L. Konne, B.O. Christopher, Hindawi J. Nanotechnol. 2017, 5219850 (2017). https://doi.org/10.1155/2017/5219850

    Article  Google Scholar 

  27. P. Singh, A. Kaushal, D. Kaur, J. Alloys Comp. 471, 11 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mikailzade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikailzade, F., Türkan, H., Önal, F. et al. Structural, optical and magnetic characterization of nanorod-shaped polycrystalline Zn1−xMnxO films synthesized using sol–gel technique. Appl. Phys. A 126, 768 (2020). https://doi.org/10.1007/s00339-020-03953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03953-0

Keywords

Navigation