Skip to main content

Advertisement

Log in

Effect of minor phase (CuO) on sinterability, grain size, and dielectric properties of CaCu3Ti4O12 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CaCu3Ti4O12 (CCTO) electro ceramic was prepared by a solid-state reaction technique. The formation of CCTO was confirmed by X-ray diffraction (XRD). Pellets of calcined powder were sintered at different temperatures for two different durations, i.e., 2 and 10 h (h). The morphology and grain size of the samples were observed using scanning electron microscopy (SEM). SEM images showed that the minor phase (CuO) plays an important role in the growth of grain size. It seems that higher sintering temperatures led to change in the oxidation states of Cu and Ti, which increase the volume fraction of the CuO minor phase. Dielectric studies show that the dielectric constant is increasing with increasing sintering temperature, holding time, and presence of the CuO phase. The highest dielectric constant of ~ 41,000 was observed for CCTO samples sintered at 1100 °C for 10 h. The present samples find application in the energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.K. Pandey, W.A. Stapleton, J. Tate, A.K. Bandyopadhyay, I. Sutanto, S. Sprissler, S. Lin, Applications of CCTO supercapacitor in energy storage and electronics. AIP Adv. 3, 062126 (2013). https://doi.org/10.1063/1.4812709

    Article  ADS  Google Scholar 

  2. M. Horn, J. MacLeod, M. Liu, J. Webb, N. Motta, Supercapacitors: a new source of power for electric cars? Econ. Anal. Policy 61, 93–103 (2019). https://doi.org/10.1016/j.eap.2018.08.003

    Article  Google Scholar 

  3. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Giant dielectric constant response in a copper–titanate. Solid State Commun. 115, 217–220 (2000). https://doi.org/10.1016/S0038-1098(00)00182-4

    Article  ADS  Google Scholar 

  4. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673–676 (2001). https://doi.org/10.1126/science.1061655

    Article  ADS  Google Scholar 

  5. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000). https://doi.org/10.1006/jssc.2000.8703

    Article  ADS  Google Scholar 

  6. B. Barbier, C. Combettes, S. Guillemet-Fritsch, T. Chartier, F. Rossignol, A. Rumeau, T. Lebey, E. Dutarde, CaCu3Ti4O12 ceramics from co-precipitation method: dielectric properties of pellets and thick films. J. Eur. Ceram. Soc. 29, 731–735 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.07.042

    Article  Google Scholar 

  7. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153–2155 (2002). https://doi.org/10.1063/1.1463211

    Article  ADS  Google Scholar 

  8. J. Li, A.W. Sleight, M.A. Subramanian, Evidence for internal resistive barriers in a crystal of the giant dielectric constant material: CaCu3Ti4O12. Solid State Commun. 135, 260–262 (2005). https://doi.org/10.1016/j.ssc.2005.04.028

    Article  ADS  Google Scholar 

  9. T.-T. Fang, C.P. Liu, Evidence of the internal domains for inducing the anomalously high dielectric constant of CaCu3Ti4O12. Chem. Mater. 17, 5167–5171 (2005). https://doi.org/10.1021/cm051180k

    Article  ADS  Google Scholar 

  10. W.Q. Ni, X.H. Zheng, J.C. Yu, Sintering effects on structure and dielectric properties of dielectrics CaCu3Ti4O12. J. Mater. Sci. 42, 1037–1041 (2007). https://doi.org/10.1007/s10853-006-1431-7

    Article  ADS  Google Scholar 

  11. M.J. Abu, N. Marzuki, M.F. Ain, J.J. Mohamed, Z.A. Ahmad, The effects of sintered sample thickness on the dielectric properties of CaCu3Ti4O12 ceramics prepared at 1000–1100 °C in air. Ceram. Int. 45, 14652–14662 (2019). https://doi.org/10.1016/j.ceramint.2019.04.184

    Article  Google Scholar 

  12. D.P. Samarakoon, R.N. Singh, Thickness dependent dielectric properties of calcium copper titanate ceramics measured in a controlled atmosphere. Ceram. Int. 45, 16554–16563 (2019). https://doi.org/10.1016/j.ceramint.2019.05.192

    Article  Google Scholar 

  13. J. Liu, R.W. Smith, W.-N. Mei, Synthesis of the giant dielectric constant material CaCu3Ti4O12 by wet-chemistry methods. Chem. Mater. 19, 6020–6024 (2007). https://doi.org/10.1021/cm0716553

    Article  Google Scholar 

  14. S. Jin, H. Xia, Y. Zhang, J. Guo, J. Xu, Synthesis of CaCu3Ti4O12 ceramic via a sol-gel method. Mater. Lett. 61, 1404–1407 (2007). https://doi.org/10.1016/j.matlet.2006.07.041

    Article  Google Scholar 

  15. B.P. Zhu, Z.Y. Wang, Y. Zhang, Z.S. Yu, J. Shi, R. Xiong, Low temperature fabrication of the giant dielectric material CaCu3Ti4O12 by oxalate coprecipitation method. Mater. Chem. Phys. 113, 746–748 (2009). https://doi.org/10.1016/j.matchemphys.2008.08.037

    Article  Google Scholar 

  16. P. Mao, J. Wang, L. Zhang, S. Liu, Y. Zhao, Q. Sun, Rapid fabrication and improved electrical properties of CaCu3Ti4O12 ceramics by sol–gel and spark plasma sintering techniques. J. Mater. Sci. Mater. Electron. 30, 13401–13411 (2019). https://doi.org/10.1007/s10854-019-01708-z

    Article  Google Scholar 

  17. X. Zhao, L. Ren, L. Yang, S. Li, R. Liao, W. Li, J. Li, Structure and dielectric relaxations of CaCu3Ti4O12 ceramics by heat treatments in different atmospheres. IEEE Trans. Dielectr. Electr. Insul. 24, 764–773 (2017). https://doi.org/10.1109/TDEI.2017.006278

    Article  Google Scholar 

  18. A.A. Felix, V.D.N. Bezzon, M.O. Orlandi, D. Vengust, M. Spreitzer, E. Longo, D. Suvorov, J.A. Varela, Role of oxygen on the phase stability and microstructure evolution of CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 37, 129–136 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.07.039

    Article  Google Scholar 

  19. P. Mao, J. Wang, S. Liu, L. Zhang, Y. Zhao, K. Wu, Z. Wang, J. Li, Improved dielectric and nonlinear properties of CaCu3Ti4O12 ceramics with Cu-rich phase at grain boundary layers. Ceram. Int. 45, 15082–15090 (2019). https://doi.org/10.1016/j.ceramint.2019.04.247

    Article  Google Scholar 

  20. W.-X. Yuan, L. Zhongkuan, W. Chundong, Investigation on effects of CuO secondary phase on dielectric properties of CaCu3Ti4O12 ceramics. J. Alloys Compd. 562, 1–4 (2013). https://doi.org/10.1016/j.jallcom.2013.02.035

    Article  Google Scholar 

  21. R. Schmidt, S. Pandey, P. Fiorenza, D.C. Sinclair, Non-stoichiometry in “CaCu3Ti4O12” (CCTO) ceramics. RSC Adv. 3, 14580–14589 (2013). https://doi.org/10.1039/C3RA41319E

    Article  Google Scholar 

  22. S. Rani, N. Ahlawat, K.M. Sangwan, R. Punia, A. Kumar, An approach for correlating electrically heterogeneous structure to enhanced dielectric properties of Sr and Zn co-substituted CaCu3Ti4O12 ceramics. J. Alloys Compd. 769, 1102–1112 (2018). https://doi.org/10.1016/j.jallcom.2018.07.370

    Article  Google Scholar 

  23. D. Xu, X. Yue, J. Song, S. Zhong, J. Ma, L. Bao, L. Zhang, S. Du, Improved dielectric and non-ohmic properties of (Zn + Zr) codoped CaCu3Ti4O12 thin films. Ceram. Int. 45, 11421–11427 (2019). https://doi.org/10.1016/j.ceramint.2019.03.008

    Article  Google Scholar 

  24. D. Xu, X. Yue, Y. Zhang, J. Song, X. Chen, S. Zhong, J. Ma, L. Ba, L. Zhang, S. Du, Enhanced dielectric properties and electrical responses of cobalt-doped CaCu3Ti4O12 thin films. J. Alloys Compd. 773, 853–859 (2019). https://doi.org/10.1016/j.jallcom.2018.09.340

    Article  Google Scholar 

  25. S. Thakur, O.P. Pandey, K. Singh, Effect of Ca substitution on structural, magnetic and dielectric properties of BiFeO3. Phase Trans. 87, 527–540 (2014). https://doi.org/10.1080/01411594.2013.879477

    Article  Google Scholar 

  26. S.S. Danewalia, G. Sharma, S. Thakur, K. Singh, Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics. Sci. Rep. 6, 24617 (2016). https://doi.org/10.1038/srep24617

    Article  ADS  Google Scholar 

  27. S. Guillemet-Fritsch, T. Lebey, M. Boulos, B. Durand, Dielectric properties of CaCu3Ti4O12 based multiphased ceramics. J. Eur. Ceram. Soc. 26, 1245–1257 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.01.055

    Article  Google Scholar 

  28. S. Rani, N. Ahlawat, R. Punia, K.M. Sangwan, S. Rani, Dielectric relaxation and conduction mechanism of complex perovskite Ca0.90Sr0.10Cu3Ti39.5Zn0.05O12 ceramic. Ceram. Int. 44, 5996–6001 (2018). https://doi.org/10.1016/j.ceramint.2017.12.187

    Article  Google Scholar 

  29. W. Li, R.W. Schwartz, Maxwell–Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics. Phys. Rev. B 75, 012104 (2007). https://doi.org/10.1103/PhysRevB.75.012104

    Article  ADS  Google Scholar 

  30. C.C. Wang, Y.J. Yan, L.W. Zhang, M.Y. Cui, G.L. Xie, B.S. Cao, Maxwell–Wagner relaxation in CaCu3Ti4O12/Ag composites. Scr. Mater. 54, 1501–1504 (2006). https://doi.org/10.1016/j.scriptamat.2005.12.047

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. T. D. Senguttuvan, Advance Ceramic and Devices Section, National Physical Laboratory, New Delhi for fruitful discussion and carrying out this research work in his laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kulvir Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, T., Punj, S., Kumar, R. et al. Effect of minor phase (CuO) on sinterability, grain size, and dielectric properties of CaCu3Ti4O12 ceramics. Appl. Phys. A 126, 771 (2020). https://doi.org/10.1007/s00339-020-03963-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03963-y

Keywords

Navigation