Skip to main content
Log in

Virtual element methods for nonlocal parabolic problems on general type of meshes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider the discretization of a parabolic nonlocal problem within the framework of the virtual element method. Using the fixed point argument, we prove that the fully discrete scheme has a unique solution. The presence of the nonlocal term makes the problem nonlinear, and the resulting nonlinear equations are solved using the Newton method. The computational cost of the Jacobian of the nonlinear scheme increases in the presence of nonlocal coefficient. To reduce the computational burden in computing the Jacobian, which otherwise is inevitable in the usual approach, in this paper, we propose an equivalent formulation. A priori error estimates in the L2 and the H1 norms are derived. Furthermore, we employ a linearized scheme without compromising the rate of convergence in the respective norms. Finally, the theoretical convergence results are verified through numerical experiments over polygonal meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaudhary, S., Srivastava, V., Kumar, V.S., Srinivasan, B.: Finite element approximation of nonlocal parabolic problem. Numer. Methods Partial Differential Equations 33(3), 786–813 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Anaya, V., Bendahmane, M., Mora, D., Spúlveda, M.: A virtual element method for a nonlocal FitzHugh-Nagumo model of cardiac electrophysiology. IMA J. Numer. Anal. 40(2), 1544–1579 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Bendahmane, M., Sepúlveda, M.: Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete Contin. Dyn. Syst. Ser. B 11(4), 823–853 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Gudi, T.: Finite element method for a nonlocal problem of Kirchhoff type. SIAM J. Numer. Anal. 50(2), 657–668 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Sharma, N., Pani, A.K., Sharma, K.K.: Expanded mixed fem with lowest order rt elements for nonlinear and nonlocal parabolic problems. Adv. Comput. Math. 44(5), 1537–1571 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method for Elliptic Problems, vol. 11. Springer, Berlin (2014)

    MATH  Google Scholar 

  7. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49(5), 1737–1760 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Sukumar, N., Malsch, E.A.: Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Methods Eng. 13(1), 129 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Sze, K.Y., Sheng, N.: Polygonal finite element method for nonlinear constitutive modeling of polycrystalline ferroelectrics. Finite Elem. Anal. Des. 42 (2), 107–129 (2005)

    Google Scholar 

  11. Bishop, J.E.: A displacement based finite element formulation for general polyhedra using harmonic shape functions. Int. J. Numer. Meth. Eng. 97, 1–31 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Manzini, G., Russo, A., Sukumar, N.: New perspectives on polygonal and polyhedral finite element method. Math. Models Methods Appl. Sci. 24, 1665–1699 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Natarajan, S., Ooi, E.T., Chiong, I., Song, C.: Convergence and accuracy of displacement based finite element formulation over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation. Finite Elem. Anal. Des. 85, 101–122 (2014)

    MathSciNet  Google Scholar 

  15. Natarajan, S., Bordas, S.P.A., Ooi, E.T.: Virtual and smoothed finite elements: a connection and its application to polygonal/polyhedral finite element methods. Int. J. Numer. Meth. Eng. 104, 1173–1199 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Di Pietro, D., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Engrg. 283, 1–21 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Natarajan, S., Ooi, E.T., Saputra, A., Song, C.: A scaled boundary finite element formulation over arbitrary faceted star convex polyhedra. Eng. Anal. Bound. Elem. 80, 218–229 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Song, C., Ooi, E.T., Natarajan, S.: A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics. Eng. Fract. Mech. 187, 45–73 (2018)

    Google Scholar 

  20. Gain, A.L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282, 132–160 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Beirão da Veiga, L, Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Beirão da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Mora, D., Rivera, G.: A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations. IMA J. Numer. Anal. 40(1), 322–357 (2020)

    MathSciNet  Google Scholar 

  24. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Beirão da Veiga, L., Mora, D., Rivera, G.: Virtual elements for a shear-deflection formulation of reissner-mindlin plates. Math. Comp. 88 (315), 149–178 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51(2), 509–535 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56 (3), 1210–1242 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Cáceres, E, Gatica, G.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37(1), 296–331 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue problem. Math. Model Methods Appl. Sci. 25(08), 1421–1445 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Mora, D., Rivera, G., Rodríguez, R.: A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem. Comput. Math. Appl. 74(9), 2172–2190 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Beirão da Veiga, L., Mora, D., Rivera, G., Rodríguez, R: A virtual element method for the acoustic vibration problem. Numer. Math. 136 (3), 725–763 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Čertík, O., Gardini, F., Manzini, G., Vacca, G.: The virtual element method for eigenvalue problems with potential terms on polytopic meshes. Appl. Math. 63(3), 333–365 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Gardini, F., Vacca, G.: Virtual element method for second-order elliptic eigenvalue problems. IMA J. Numer. Anal. 38(4), 2026–2054 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Mora, D., Velásquez, I.: Virtual element for the buckling problem of Kirchhoff–Love plates. Comput. Methods Appl. Mech. Engrg. 360 (112687), 1–21 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differential Equations 31(6), 2110–2134 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Vacca, G.: Virtual element methods for hyperbolic problems on polygonal meshes. Comput. Math. Appl. 74, 882–898 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Adak, D., Natarajan, E., Kumar, S.: Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes. Numer. Methods Partial Differential Equations 35(1), 222–245 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Adak, D., Natarajan, E., Kumar, S.: Virtual element method for semilinear hyperbolic problems on polygonal meshes. Int. J. Comput. Math. 96(5), 971–991 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50(3), 879–904 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54(6), 3411–3435 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (3), 1317–1354 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50(3), 727–747 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Beirão da Veiga, L., Mora, D., Vacca, G.: The Stokes complex for virtual elements with application to Navier-Stokes flows. J. Sci. Comput. 81 (2), 990–1018 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Cangiani, A., Chatzipantelidis, P., Diwan, G., Georgoulis, E.H.: Virtual element method for quasilinear elliptic problems. IMA J. Numer. Anal. (in press) (2020)

  46. Gatica, G., Munar, M., Sequeira, F.: A mixed virtual element method for the Navier-Stokes equations. Math. Models Methods Appl. Sci. 28(14), 2719–2762 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Chipot, M., Valente, V., Vergara Caffarelli, G.: Remarks on a nonlocal problem involving the Dirichlet energy. Rend. Sem. Mat. Univ. Padova 110, 199–220 (2003)

    MathSciNet  MATH  Google Scholar 

  48. Zheng, S., Chipot, M.: Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms. Asymptot. Anal. 45(3,4), 301–312 (2005)

    MathSciNet  MATH  Google Scholar 

  49. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Beirão da Veiga, L., Dassi, F., Russo, A.: High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74(5), 1110–1122 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Mascotto, L.: Ill-conditioning in the virtual element method: Stabilizations and bases. Numer. Meth. Partial Differ. Equ. 34(4), 1258–1281 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Dassi, F., Mascotto, L.: Exploring high-order three dimensional virtual elements: bases and stabilizations. Comput. Math. Appl. 75(9), 3379–3401 (2018)

    MathSciNet  MATH  Google Scholar 

  53. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(08), 1541–1573 (2014)

    MathSciNet  MATH  Google Scholar 

  54. Beirão da Veiga, L., Chernov, A., Mascotto, L., Russo, A.: Basic principles of hp virtual elements on quasiuniform meshes. Math. Model Methods Appl. Sci. 26(08), 1567–1598 (2016)

    MathSciNet  MATH  Google Scholar 

  55. Lions, J.L.: Quelques méthodes de résolution des problemes aux limites non linéaires, Dunod Paris (1969)

  56. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to Prof. David Mora (Universidad del Bío-Bío, Concepción, Chile) for the fruitful discussions. We convey our sincere gratitude to Arrutselvi M and E. Natarajan (Indian Institute of Space Science and Technology-Thiruvananthapuram) for helping the implementation of the VEM in Matlab.

Funding

Dibyendu Adak was partially supported by CONICYT-Chile through FONDECYT Postdoctorado project 3200242, Departamento de Matemática, Universidad del Bío-Bío, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Natarajan.

Additional information

Communicated by: Lourenco Beirao da

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adak, D., Natarajan, S. Virtual element methods for nonlocal parabolic problems on general type of meshes. Adv Comput Math 46, 74 (2020). https://doi.org/10.1007/s10444-020-09811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09811-0

Keywords

Mathematics Subject Classification (2010)

Navigation