Skip to main content
Log in

Modeling, dynamics, and parametric studies of a multi-cable-stayed beam model

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

To study the dynamic behavior of cable-stayed bridges, a linear multi-cable-stayed beam model is developed to investigate its in-plane and out-of-plane transverse vibrations. From the full-bridge perspective, an in-plane nonlinear single-mode discrete model is established. First, the in-plane and out-of-plane motion equations of the system and their boundary conditions are derived. Second, by employing the separation of variables method, the linear eigenvalue problems are solved. The influences of the mass ratio, stiffness ratio, and cable sag on the occurrence of global, local, and coupled vibration modes are studied. Third, frequency response, amplitude response, phase diagram, time history, and power spectrum are extracted to investigate the system’s nonlinear dynamic behaviors. The obtained results demonstrate that for the in-plane motion, the occurrence of global and local modes of the system depends on the mass and stiffness ratios between cable and beam significantly; for the out-of-plane motion, without the elastic support of the cable, the global modes occur, which can be suppressed by adjusting the mass and stiffness ratios between cable and beam but may in turn induce the cable’s local vibration modes; for the nonlinear analysis, the single-degree-of-freedom system behaves like a hardening spring. Its lower branch behaves more complicated than the higher one and has a double-periodic steady-state solution. The system with large damping ratio behaves shows weak hardening spring property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Fujino, Y., Warnitchai, P., Pacheco, B.M.: An experimental and analytical study of autoparametric resonance in a 3DOF model of cable-stayed-beam. Nonlinear Dynam. 4, 111–138 (1993)

    Google Scholar 

  2. Warnitchai, P., Fujino, Y., Susumpow, T.: A nonlinear dynamic model for cables and its application to a cable-structure system. J. Sound Vib. 187(4), 695–712 (1995)

    Article  Google Scholar 

  3. Xia, Y., Fujino, Y.: Auto-parametric vibration of a cable-stayed beam structure under random excitation. J. Eng. Mech. 132(3), 279–286 (2006)

    Article  Google Scholar 

  4. Gattulli, V.A.P.: Planar motion of a cable-supported beam with feedback controlled actions. J. Intel. Mat. Syst. Str. 8, 767–774 (1997)

    Article  Google Scholar 

  5. Gattulli, V., Paolone, A.: A parametric analytical model for non-linear dynamics in cable-stayed beam. Earthq. Eng. Struct. D 31, 1281–1300 (2002)

    Article  Google Scholar 

  6. Fung, R.F., Lu, L.Y., Huang, S.C.: Dynamic modelling and vibration analysis of a flexible cable-stayed beam structure. J. Sound Vib. 254(4), 717–726 (2002)

    Article  Google Scholar 

  7. Lenci, S., Ruzziconi, L.: Nonlinear phnomena in the single-mode dynamics of a cable-supported beam. Int. J. Bifurcat. Chaos 19(3), 923–945 (2009)

    Article  Google Scholar 

  8. Zhu, J., Ye, G.R., Xiang, Y.Q., Chen, W.Q.: Dynamic behavior of cable-stayed beam with localized damage. J. Vib. Control 17(7), 1080–1089 (2010)

    Article  MathSciNet  Google Scholar 

  9. Wei, M.H., Xiao, Y.Q., Liu, H.T.: Bifurcation and chaos of a cable-beam coupled system under simultaneous internal and external resonances. Nonlinear Dynam. 67(3), 1969–1984 (2011)

    Article  MathSciNet  Google Scholar 

  10. Wei, M.H., Xiao, Y.Q., Liu, H.T., Lin, K.: Nonlinear responses of a cable-beam coupled system under parametric and external excitations. Arch. Appl. Mech. 84(2), 173–185 (2013)

    Article  Google Scholar 

  11. Wei, M.H., Lin, K., Jin, L., Zou, D.J.: Nonlinear dynamics of a cable-stayed beam driven by sub-harmonic and principal parametric resonance. Int. J. Mech. Sci. 110, 78–93 (2016)

    Article  Google Scholar 

  12. Wang, Z., Sun, C., Zhao, Y., Yi, Z.: Modeling and nonlinear modal characteristics of the cable-stayed beam. Eur. J. Mech. A-Solid. 47, 58–69 (2014)

    Article  MathSciNet  Google Scholar 

  13. Wang, Z., Yi, Z., Luo, Y.: Energy-based formulation for nonlinear normal modes in cable-stayed beam. Appl. Math. Comput. 265, 176–186 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Peng, J., Xiang, M., Wang, L., Xie, X., Sun, H., Yu, J.: Nonlinear primary resonance in vibration control of cable-stayed beam with time delay feedback. Mech. Syst. Signal Pr. 137(106488), 1–16 (2019)

    Google Scholar 

  15. Wang, Z.: Modelling with Lagrange’s method and experimental analysis in cable-stayed beam. Int. J. Mech. Sci. 176(105518), 1–13 (2020)

    Google Scholar 

  16. Liu, M., Zheng, L., Zhou, P., Xiao, H.: Stability and dynamics analysis of in-plane parametric vibration of stay cables in a cable-stayed bridge with superlong spans subjected to axial excitation. J. Aerospace Eng. 33(1), 04019106 (2020)

    Article  Google Scholar 

  17. Haibo, L., Jianjun, X.: Analysis on sensitivity of global mode of floating cablestayed bridge to CFRP cable. J. Dynam. Control 16(3), 250–257 (2018). (In Chinese)

    Google Scholar 

  18. Zhang, Y., Fang, Z., Jiang, R., Xiang, Y., Long, H., Lu, J.: Static performance of a long-span concrete cable-stayed bridge subjected to multiple-cable loss during construction. J. Bridge Eng. 25(3), 04020002 (2020)

    Article  Google Scholar 

  19. Cao, D.Q., Song, M.T., Zhu, W.D., Tucker, R.W., Wang, C.H.T.: Modeling and analysis of the in-plane vibration of a complex cable-stayed bridge. J. Sound Vib. 331(26), 5685–5714 (2012)

    Article  Google Scholar 

  20. Song, M.T., Cao, D.Q., Zhu, W.D., Bi, Q.S.: Dynamic response of a cable-stayed bridge subjected to a moving vehicle load. Acta Mech. 227(10), 2925–2945 (2016)

    Article  MathSciNet  Google Scholar 

  21. Kang, H.J., Guo, T.D., Zhao, Y.Y., Fu, W.B., Wang, L.H.: Dynamic modeling and in-plane 1:1:1 internal resonance analysis of cable-stayed bridge. Eur. J. Mech. A-Solid. 62, 94–109 (2017)

    Article  MathSciNet  Google Scholar 

  22. Cong, Y., Kang, H., Guo, T.: Planar multimodal 1:2:2 internal resonance analysis of cable-stayed bridge. Mech. Syst. Signal Pr. 120, 505–523 (2019)

    Article  Google Scholar 

  23. Cong, Y., Kang, H., Guo, T.: Analysis of in-plane 1:1:1 internal resonance of a double cable-stayed shallow arch model with cables’ external excitations. Appl. Math. Mech. Engl. 40(7), 977–1000 (2019)

    Article  MathSciNet  Google Scholar 

  24. Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Nonlin. Mech. 19(1), 39–52 (1984)

    Article  Google Scholar 

  25. Irvine, H.M.: Cable Structures. MIT Press, Cambridge (1981)

    Google Scholar 

  26. Nayfeh, A.H.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  27. Benedettini, F., Rega, G.: Non-linear dynamics of an elastic cable under planar excitation. Int. J. Nonlin. Mech. 22(6), 497–509 (1987)

    Article  Google Scholar 

  28. Kamel, M.M., Hamed, Y.S.: Nonlinear analysis of an elastic cable under harmonic excitation. Acta Mech. 214(3), 315–325 (2010)

    Article  Google Scholar 

  29. Nayfeh, A.H.: The response of non-linear single-degree-of-freedom systems to multifrequency excitations. J. Sound Vib. 102(3), 403–414 (1985)

    Article  MathSciNet  Google Scholar 

  30. Zhao, Y., Guo, Z., Huang, C., Chen, L., Li, S.: Analytical solutions for planar simultaneous resonances of suspended cables involving two external periodic excitations. Acta Mech. 229(11), 4393–4411 (2018)

    Article  MathSciNet  Google Scholar 

  31. Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. P. Roy. Soc. A Math. Phy. 341(1626), 299–315 (1974)

    Google Scholar 

  32. Wang, L., Zhao, Y.: Nonlinear interactions and chaotic dynamics of suspended cables with three-to-one internal resonances. Int. J. Solids Struct. 43(25–26), 7800–7819 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by National Science Foundation of China under Grant Nos. 11572117, 11502076, 11872176 and 11972151, and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houjun Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For compact expression, the following integrals are introduced to define the coefficients \(c_{i}\) and the excitation amplitude \(F_{i}\) in Eq. (28).

$$\begin{aligned} \Gamma _{c1}= & {} \int _0^1 {\phi _{c1}^{2} dx} ,\quad \Gamma _{c2} =\int _0^1 {\phi _{c2}^{2} dx} ,\quad \Gamma _{c3} =\int _0^1 {{\phi '}_{c1}^{2} dx} ,\quad \Gamma _{c4} =\int _0^1 {{\phi ' }_{c2}^{2} dx} , \nonumber \\ \Gamma _{c5}= & {} \int _0^1 {\phi _{c1} {\phi ''}_{c1} dx} ,\quad \Gamma _{c6} =\int _0^1 {\phi _{c2} {\phi '' }_{c2} dx} ,\quad \Gamma _{c7} =\int _0^1 {{{y}'}'_{c1} \phi _{c1} dx} ,\quad \Gamma _{c8} =\int _0^1 {{{y}'}'_{c2} \phi _{c2} dx}, \nonumber \\ \Gamma _{b1}= & {} \int _0^{s_{1} } {\phi _{b1}^{2} dx} +\int _{s_{1} }^{s_{2} } {\phi _{b2}^{2} dx} +\int _{s_{2} }^1 {\phi _{b3}^{2} dx}, \nonumber \\ \Gamma _{b2}= & {} \int _0^{s_{1} } {f_{1} \phi _{b1} dx} +\int _{s_{1} }^{s_{2} } {f_{1} \phi _{b2} dx} +\int _{s_{2} }^1 {f_{1} \phi _{b3} dx}, \nonumber \\ \Gamma _{b3}= & {} \int _0^{s_{1} } {f_{2} \phi _{b1} dx} +\int _{s_{1} }^{s_{2} } {f_{2} \phi _{b2} dx} +\int _{s_{2} }^1 {f_{2} \phi _{b3} dx}, \nonumber \\ m_{v}= & {} \beta _{c}^{2} \left( {\Gamma _{c1} +\Gamma _{c2} +\frac{\gamma ^{3}}{\rho }\Gamma _{b1} } \right) , \end{aligned}$$
(A.1)

where \(f_{i}\) are the amplitudes of external harmonic excitation applied to the components of the beam. Therefore, the coefficients \(c_{i}\) and \(F_{i}\) are expressed as

$$\begin{aligned} c_{1}= & {} \frac{\beta _{c}^{2} }{m_{v} }\left( {\xi _{c} \left( {\Gamma _{c1} +\Gamma _{c2} } \right) +\xi _{b} \frac{\gamma ^{3}}{\rho }\Gamma _{b1} } \right) , \nonumber \\ c_{2}= & {} -\frac{\mu }{m_{v} }\left( {\frac{1}{2}\Gamma _{c3} \Gamma _{c7} +\frac{1}{2}\Gamma _{c4} \Gamma _{c8} +\bar{{\varepsilon }}_{1} \Gamma _{c5} +\bar{{\varepsilon }}_{2} \Gamma _{c6} } \right) , \nonumber \\ c_{3}= & {} -\frac{\mu }{2m_{v} }\left( {\Gamma _{c3} \Gamma _{c5} +\Gamma _{c4} \Gamma _{c6} } \right) , \nonumber \\ F_{1}= & {} \frac{\beta _{c}^{2} }{m_{v} }\frac{\gamma ^{3}}{\rho }\Gamma _{b2},\nonumber \\ F_{2}= & {} \frac{\beta _{c}^{2} }{m_{v} }\frac{\gamma ^{3}}{\rho }\Gamma _{b3}. \end{aligned}$$
(A.2)

The coefficients in Eq. (43) are given as

$$\begin{aligned} \Lambda _{1}= & {} -\frac{6c_{3} F_{2}^{2}}{(1-\Omega _{2}^{2})^{2}}+\frac{4c_{2}^{2} F_{2}^{2}}{(\Omega _{2}^{2} -1)^{2}}-\frac{8c_{2}^{2} F_{2}^{2}}{(\Omega _{2}^{2} -4)(\Omega _{2}^{2} -1)^{2}}, \nonumber \\ \Lambda _{2}= & {} -\frac{2c_{2}^{2} F_{2} }{3(1-\Omega _{2}^{2} )}-\frac{3c_{3} F_{2} }{1-\Omega _{2}^{2} }+\frac{4c_{2}^{2} F_{2} }{(\Omega _{2} -2)\Omega _{2} (\Omega _{2}^{2} -1)}, \nonumber \\ \Lambda _{3}= & {} \frac{10}{3}c_{2}^{2} -3c_{3}. \end{aligned}$$
(A.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, Y., Kang, H., Yan, G. et al. Modeling, dynamics, and parametric studies of a multi-cable-stayed beam model. Acta Mech 231, 4947–4970 (2020). https://doi.org/10.1007/s00707-020-02802-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02802-8

Navigation