Skip to main content
Log in

Ag@CeO2 nanoparticles with “rice ball” configuration as an efficient and heterogeneous nanocatalyst for the selective oxidation of sulfides to sulfones with 30% H2O2

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Ag@CeO2 with a rice-ball configuration as a heterogeneous and highly efficient catalyst was described for activation of H2O2 in the selective oxidation of aromatic and aliphatic sulfides to their corresponding sulfones. Ag nanoparticles in the CeO2–Ag interface increase the oxygen vacancy defects on the surface of CeO2 and oxygen vacancy defects promote the reduction of Ce4+ to Ce3+ to keep the electroneutrality. Generated Ce3+ species act as the active sites in the interface of CeO2–Ag to promote the oxidation of sulfides to sulfones. Compatibility with various aromatic and aliphatic sulfides, excellent selectivity, high yield of product, simple experimental procedure, and mild reaction conditions are some of the precious advantages of Ag@CeO2/H2O2 catalyst system.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Long Y, Yu M, Li P, Islam S, Goh AW, Kumarasiri M, Wang S (2016) Bioorg Med Chem Lett 26:5674

    Article  CAS  Google Scholar 

  2. Liéby-Muller F, Le Baliner QH, Grisoni S, Fournier E, Guilbaud N, Marion F (2015) Bioorg Med Chem Lett 25:2078

    Article  Google Scholar 

  3. Hartz RA, Arvanitis AG, Arnold C, Rescinito JP, Hung KL, Zhang G, Wong H, Langley DR, Gilligan PJ, Trainor GL (2006) Bioorg Med Chem Lett 16:934

    Article  CAS  Google Scholar 

  4. Nielsen M, Jacobsen CB, Holub N, Paixao MW, Jørgensen KA (2010) Angew Chem Int Ed 49:2668

    Article  CAS  Google Scholar 

  5. Pellissier H (2006) Tetrahedron 24:5559

    Article  Google Scholar 

  6. Dini I, Tenore GC, Dini A (2008) J Nat Prod 71:2036

    Article  CAS  Google Scholar 

  7. El-Aasr M, Fujiwara Y, Takeya M, Ikeda T, Tsukamoto S, Ono M, Nakano D, Okawa M, Kinjo J, Yoshimitsu H (2010) J Nat Prod 73:1306

    Article  CAS  Google Scholar 

  8. Khodaei MM, Bahrami K, Khedri M (2007) Can J Chem 85:7

    Article  CAS  Google Scholar 

  9. Sheikhshoaie I, Rezaeifard A, Monadi N, Kaafi S (2009) Polyhedron 28:733

    Article  CAS  Google Scholar 

  10. Bahrami K, Khodaei MM, Sheikh Arabi M (2010) J Org Chem 75:6208

    Article  CAS  Google Scholar 

  11. Abdi G, Alizadeh A, Khodaei MM (2017) Mater Chem Phys 201:323

    Article  CAS  Google Scholar 

  12. Kon Y, Yokoi T, Yoshioka M, Tanaka S, Uesaka Y, Mochizuki T, Sato K, Tatsumi T (2014) Tetrahedron 70:7584

    Article  CAS  Google Scholar 

  13. Zhao W, Yang C, Liu K, Yang Y, Chang T (2017) New J Chem 41:447

    Article  CAS  Google Scholar 

  14. Lutz M, Wenzler M, Likhotvorik I (2018) Synthesis 50:2231

    Article  CAS  Google Scholar 

  15. Tosi I, Vurchio C, Abrantes M, Gonçalves IS, Pillinger M, Cavani F, Cordero FM, Brandi A (2018) Catal Commun 103:60

    Article  CAS  Google Scholar 

  16. Jereb M (2012) Green Chem 14:3047

    Article  CAS  Google Scholar 

  17. Bekyarova E, Fornasiero P, Kašpar J, Graziani M (1998) Catal Today 45:179

    Article  CAS  Google Scholar 

  18. Keshipour S, Mirmasoudi SS (2018) Carbohydr Polym 196:494

    Article  CAS  Google Scholar 

  19. Keshipour S, Khezerloo M (2018) Appl Organomet Chem 32:e4255

    Article  Google Scholar 

  20. Rao BG, Sudarsanam P, Rao TV, Amin MH, Bhargava S-K, Reddy BM (2020) Catal Lett. https://doi.org/10.1007/s10562-020-03205-z

    Article  Google Scholar 

  21. Xiao H, Wang R, Dong L, Cui Y, Chen Sh, Sun H, Ma G, Gao D, Wang L (2019) ACS Omega 4:18685

    Article  CAS  Google Scholar 

  22. Dong XY, Gao ZW, Yang KF, Zhang WQ, Xu LW (2015) Catal Sci Technol 5:2554

    Article  CAS  Google Scholar 

  23. Kopia A, Kowalski K, Chmielowska M, Leroux C (2008) Surf Sci 602:1313

    Article  CAS  Google Scholar 

  24. Kayama T, Yamazaki K, Shinjoh H (2010) J Am Chem Soc 132:13154

    Article  CAS  Google Scholar 

  25. Yamazaki K, Kayama T, Dong F, Shinjoh H (2011) J Catal 282:289

    Article  CAS  Google Scholar 

  26. Mitsudome T, Mikami Y, Matoba M, Mizugaki T, Jitsukawa K, Kaneda K (2012) Angew Chem Int Ed 51:136

    Article  CAS  Google Scholar 

  27. Mitsudome T, Yamamoto M, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K (2015) J Am Chem Soc 137:13452

    Article  CAS  Google Scholar 

  28. Mitsudome T, Urayama T, Yamazaki K, Maehara Y, Yamasaki J, Gohara K, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K (2015) ACS Catal 6:666

    Article  Google Scholar 

  29. Song S, Wang X, Zhang H (2015) NPG Asia Mater 7:e179

    Article  CAS  Google Scholar 

  30. Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R (2005) Science 309:752

    Article  CAS  Google Scholar 

  31. Lawrence NJ, Brewer JR, Wang L, Wu T-S, Wells-Kingsbury J, Ihrig MM, Wang G, Soo Y-L, Mei W-N, Cheung CL (2011) Nano Lett 11:2666

    Article  CAS  Google Scholar 

  32. Land P (1973) J Phys Chem Solids 34:1839

    Article  CAS  Google Scholar 

  33. Wang YY, Shu Y, Xu J, Pang H (2017) CrystEngComm 19:684

    Article  Google Scholar 

  34. Tabakova T, Boccuzzi F, Manzoli M, Sobczak J, Idakiev V, Andreeva D (2006) Appl Catal A 298:127

    Article  CAS  Google Scholar 

  35. Campbell CT, Peden CH (2005) Science 309:713

    Article  CAS  Google Scholar 

  36. Lu G, Linsebigler A, Yates JT Jr (1995) J Phys Chem A 99:7626

    Article  CAS  Google Scholar 

  37. Henderson MA, Epling WS, Perkins CL, Peden CH, Diebold U (1999) J Phys Chem B 103:5328

    Article  CAS  Google Scholar 

  38. Jung J, Shin H-J, Kim Y, Kawai M (2011) J Am Chem Soc 133:6142

    Article  CAS  Google Scholar 

  39. Dutta P, Pal S, Seehra M, Shi Y, Eyring E, Ernst R (2006) Chem Mater 18:5144

    Article  CAS  Google Scholar 

  40. Grabchenko M, Mamontov GV, Zaikovskii VI, Vodyankina OV (2017) Kinet Catal 58:642

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Razi University Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Soleimani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parnian, R., Soleimani, E., Bahrami, K. et al. Ag@CeO2 nanoparticles with “rice ball” configuration as an efficient and heterogeneous nanocatalyst for the selective oxidation of sulfides to sulfones with 30% H2O2. Monatsh Chem 151, 1419–1424 (2020). https://doi.org/10.1007/s00706-020-02668-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02668-5

Keywords

Navigation