Skip to main content
Log in

A Study of the Photoresponse in Graphene Produced by Chemical Vapor Deposition

  • FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of experiments aimed at fabricating and studying the properties of photodetector structures based on single-layer graphene produced by chemical vapor deposition are presented. The configuration of a Ta2O5 vertical microcavity with a resonance wavelength of about 850 nm and a lower dielectric SiO2/Ta2O5 distributed Bragg reflector is taken as the base structure. The conditions for the transfer and fabrication of mesas in the graphene layer on the microcavity surface are optimized. The diagnostics by Raman spectroscopy of the structural quality of graphene after fabrication of the mesas in the graphene layer and contact pads are indicative of the single-layer structure of graphene with a low intensity of features in its spectrum, responsible for imperfection of the structure. The photocurrent is measured under local optical pumping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Q. Yu, Y. Wang, L. Xie, S. Nadri, K. Sun, J. Zang, Q. Li, R. M. Weikle, and A. Beling, OSA Tech. Digest, SM2I.1 (2018). https://doi.org/10.1364/CLEO_SI.2018.SM2I.1

  2. A. M. Joshi and S. Datta, Proc. SPIE 10528, 105280Y (2018). https://doi.org/10.1117/12.2292979

    Article  Google Scholar 

  3. K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, Nat. Nanotechnol. 10, 437 (2015).

    ADS  Google Scholar 

  4. S. Schuler, D. Schall, D. Neumaier, L. Dobusch, O. Bethge, B. Schwarz, M. Krall, and T. Mueller, Nano Lett. 16, 7107 (2016).

    ADS  Google Scholar 

  5. A. Bablich, S. Kataria, and M. Lemme, Electronics 5 (4), 13 (2016).

    Google Scholar 

  6. D. Schall, C. Porschatis, M. Otto, and D. Neumaier, J. Phys. D: Appl. Phys. 50, 124004 (2017).

    ADS  Google Scholar 

  7. Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, ACS Nano 11, 9854 (2017).

    Google Scholar 

  8. J. Fang, D. Wang, C. T. DeVault, T.-F. Chung, Y. P. Chen, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, Nano Lett. 17, 57 (2016).

    ADS  Google Scholar 

  9. M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, Nat. Rev. Mater. 3, 392 (2018).

    ADS  Google Scholar 

  10. G. Wang, M. Zhang, D. Chen, Q. Guo, X. Feng, T. Niu, X. Liu, A. Li, J. Lai, D. Sun, Z. Liao, Y. Wang, P. K. Chu, G. Ding, X. Xie, Z. Di, and X. Wang, Nat. Commun. 9, 5168 (2018).

    ADS  Google Scholar 

  11. V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Güsken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, Nat. Commun. 9, 5190 (2018).

    ADS  Google Scholar 

  12. S. Schuler, D. Schall, D. Neumaier, B. Schwarz, K. Watanabe, T. Taniguchi, and T. Mueller, ACS Photon. 5, 4758 (2018).

  13. T. J. Yoo, Y. J. Kim, S. K. Lee, C. G. Kang, K. E. Chang, H. J. Hwang, N. Revannath, and B. H. Lee, ACS Photon. 5, 365 (2017).

  14. Y. Zhang, H. Zheng, Q. Wang, C. Cong, L. Hu, P. Tian, R. Liu, S.-L. Zhang, and Z.-J. Qiu, Small 14, 1800691 (2018).

    Google Scholar 

  15. H. Suzuki, N. Ogura, T. Kaneko, and T. Kato, Sci. Rep. 8, 11819 (2018).

    ADS  Google Scholar 

  16. Q. Ma, C. H. Lui, J. C. W. Song, Y. Lin, J. F. Kong, Y. Cao, T. H. Dinh, N. L. Nair, W. Fang, K. Watanabe, T. Taniguchi, S.-Y. Xu, J. Kong, T. Palacios, N. Gedik, N. M. Gabor, and P. Jarillo-Herrero, Nat. Nanotechnol. 14, 145 (2018).

    ADS  Google Scholar 

  17. M. Long, P. Wang, H. Fang, and W. Hu, Adv. Func. Mater. 29, 1803807 (2018).

    Google Scholar 

  18. A. Blaikie, D. Miller, and B. J. Alemán, Nat. Commun. 10, 4726 (2019).

    ADS  Google Scholar 

  19. V. Kilic, M. A. Foster, and J. B. Khurgin, Appl. Phys. Lett. 115, 161106 (2019).

    ADS  Google Scholar 

  20. J. E. Muench, A. Ruocco, M. A. Giambra, V. Miseikis, D. Zhang, J. Wang, H. F. Y. Watson, G. C. Park, S. Akhavan, V. Sorianello, M. Midrio, A. Tomadin, C. Coletti, M. Romagnoli, A. C. Ferrari, and I. Goykhman, Nano Lett. 19, 7632 (2019).

    ADS  Google Scholar 

  21. S. Marconi, V. Miseikis, M. A. Giambra, A. Montanaro, V. Sorianello, B. Torres, I. Goykhman, C. Coletti, F. Koppens, A. C. Ferrari, and M. Romagnoli, OSA Tech. Digest (San Jose, USA, 2019), p. STh4N.2. https://doi.org/10.1364/CLEO_SI.2019.STh4N.2

  22. P. Huang, E. Riccardi, S. Messelot, H. Graef, F. Valmorra, J. Tignon, T. Taniguchi, K. Watanabe, S. Dhillon, B. Plaçais, R. Ferreira, and J. Mangeney, Nat. Commun. 11, 863 (2020).

    ADS  Google Scholar 

  23. Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N. A. Mortensen, S. Xiao, and L. K. Oxenløwe, Nanophotonics 9, 317 (2020).

    Google Scholar 

  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, USA, 1985).

    Google Scholar 

  25. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science (Washington, DC, U. S.) 320 (5881), 1308 (2008).

    ADS  Google Scholar 

  26. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, Nat. Nanotechnol. 9, 780 (2014).

    ADS  Google Scholar 

  27. K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, Solid State Commun. 152, 1341 (2012).

    ADS  Google Scholar 

  28. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, Phys. Rev. Lett. 100, 117401 (2008).

    ADS  Google Scholar 

  29. T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, Nat. Commun. 2, 458 (2011).

    ADS  Google Scholar 

  30. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, Nat. Commun. 2, 579 (2011).

    ADS  Google Scholar 

  31. A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, Nat. Photon. 7, 892 (2013).

    ADS  Google Scholar 

  32. D. Schall, C. Porschatis, M. Otto, and D. Neumaier, J. Phys. D: Appl. Phys. 50, 124004 (2017).

    ADS  Google Scholar 

  33. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, Phys. Rev. Lett. 108, 047401 (2012).

    ADS  Google Scholar 

  34. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, Nat. Nanotechnol. 7, 330 (2012).

    ADS  Google Scholar 

  35. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, Nat. Nanotechnol. 7, 363 (2012).

    ADS  Google Scholar 

  36. M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, Nat. Commun. 3, 906 (2012).

    ADS  Google Scholar 

  37. M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. DeFazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, ACS Nano 11, 10955 (2017).

    Google Scholar 

  38. M. Casalino, J. Lightwave Technol. 36, 1766 (2018).

    ADS  Google Scholar 

  39. B. Vasić and R. Gajić, Opt. Lett. 39, 6253 (2014).

    ADS  Google Scholar 

  40. T. Mueller, M. Furchi, A. Urich, and A. Pospischil, Proc. SPIE 8600, 86001H (2013). https://doi.org/10.1117/12.2001886

    Article  ADS  Google Scholar 

  41. S. A. Blokhin, M. A. Bobrov, A. G. Kuzmenkov, A. A. Blokhin, A. P. Vasil’ev, Y. A. Guseva, M. M. Kulagina, I. O. Karpovsky, Y. M. Zadiranov, S. I. Troshkov, N. D. Prasolov, P. N. Brunkov, V. S. Levitsky, V. Lisak, N. A. Maleev, and V. M. Ustinov, Tech. Phys. Lett. 42, 1049 (2016).

    ADS  Google Scholar 

  42. N. V. Kryzhanovskaya, E. I. Moiseev, A. G. Gladyshev, L. Y. Karachinsky, I. I. Novikov, A. V. Babichev, S. A. Blokhin, M. A. Bobrov, Y. M. Zadiranov, S. I. Troshkov, and A. Y. Egorov, Proc. SPIE 10098, 1009811 (2017).

    Google Scholar 

  43. A. V. Babichev, H. Zhang, P. Lavenus, F. H. Julien, A. Y. Egorov, Y. T. Lin, L. W. Tu, and M. Tchernycheva, Appl. Phys. Lett. 103, 201103 (2013).

    ADS  Google Scholar 

  44. L. Mancini, M. Morassi, C. Sinito, O. Brandt, L. Geelhaar, H.-G. Song, Y.-H. Cho, N. Guan, A. Cavanna, J. Njeim, A. Madouri, C. Barbier, L. Largeau, A. Babichev, F. H. Julien, L. Travers, F. Oehler, N. Gogneau, J.-C. Harmand, and M. Tchernycheva, Nanotechnology 30, 214005 (2019).

    ADS  Google Scholar 

  45. V. Kumaresan, L. Largeau, A. Madouri, F. Glas, H. Zhang, F. Oehler, A. Cavanna, A. Babichev, L. Travers, N. Gogneau, M. Tchernycheva, and J.-C. Harmand, Nano Lett. 16, 4895 (2016).

    ADS  Google Scholar 

  46. A. V. Babichev, D. V. Denisov, M. Tchernycheva, F. H. Julien, and H. Zhang, Tech. Phys. Lett. 44, 1111 (2018).

    ADS  Google Scholar 

  47. A. V. Babichev, V. E. Gasumyants, A. Y. Egorov, S. Vitusevich, and M. Tchernycheva, Nanotechnology 25, 335707 (2014).

    Google Scholar 

  48. A. V. Babichev, V. Y. Butko, M. S. Sobolev, E. V. Nikitina, N. V. Kryzhanovskaya, and A. Y. Egorov, Semiconductors 46, 796 (2012).

    ADS  Google Scholar 

  49. M. Morassi, N. Guan, V. G. Dubrovskii, Y. Berdnikov, C. Barbier, L. Mancini, L. Largeau, A. V. Babichev, V. Kumaresan, F. H. Julien, L. Travers, N. Gogneau, J.-C. Harmand, and M. Tchernycheva, Cryst. Growth Des. 20, 552 (2020).

    Google Scholar 

  50. M. Tchernycheva, P. Lavenus, H. Zhang, A. V. Babichev, G. Jacopin, M. Shahmohammadi, F. H. Julien, R. Ciechonski, G. Vescovi, and O. Kryliouk, Nano Lett. 14, 2456 (2014).

    ADS  Google Scholar 

  51. A. V. Babichev, V. E. Gasumyants, and V. Y. Butko, J. Appl. Phys. 113, 076101 (2013).

    ADS  Google Scholar 

  52. A. V. Babichev, S. A. Rykov, M. Tchernycheva, A. N. Smirnov, V. Y. Davydov, Y. A. Kumzerov, and V. Y. Butko, ACS Appl. Mater. Interfaces 8, 240 (2015).

    Google Scholar 

  53. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1964).

    MATH  Google Scholar 

  54. G. E. Jellison and F. A. Modine, Appl. Phys. Lett. 69, 371 (1996).

    ADS  Google Scholar 

  55. D. De Fazio, D. G. Purdie, A. K. Ott, P. Braeuninger-Weimer, T. Khodkov, S. Goossens, T. Taniguchi, K. Watanabe, P. Livreri, F. H. L. Koppens, S. Hofmann, I. Goykhman, A. C. Ferrari, and A. Lombardo, ACS Nano 13, 8926 (2019).

    Google Scholar 

  56. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    ADS  Google Scholar 

  57. L. Colombo, X. Li, B. Han, C. Magnuson, W. Cai, Y. Zhu, and R. S. Ruoff, ECS Trans. 28, 109 (2010).

    ADS  Google Scholar 

  58. L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, and M. A. Pimenta, Appl. Phys. Lett. 88, 163106 (2006).

    ADS  Google Scholar 

  59. J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, Nat. Commun. 3, 1024 (2012).

    ADS  Google Scholar 

  60. C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, Nature (London, U.K.) 471 (7340), 617 (2011).

    ADS  Google Scholar 

  61. K. R. Knox, S. Wang, A. Morgante, D. Cvetko, A. Locatelli, T. O. Mentes, M. A. Niño, P. Kim, and R. M. Osgood, Phys. Rev. B 78, 201408 (2008).

    ADS  Google Scholar 

  62. R. S. Deacon, K.-C. Chuang, R. J. Nicholas, K. S. Novoselov, and A. K. Geim, Phys. Rev. B 76, 081406 (2007).

    ADS  Google Scholar 

  63. D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, Nat. Nanotechnol. 7, 114 (2012).

    ADS  Google Scholar 

  64. G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).

    ADS  Google Scholar 

  65. E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern, Nat. Nanotechnol. 3, 486 (2008).

    ADS  Google Scholar 

  66. F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Doörr, Y. Mei, A. Rastelli, and O. G. Schmidt, Nano Lett. 10, 3453 (2010).

    ADS  Google Scholar 

  67. G. Froehlicher and S. Berciaud, Phys. Rev. B 91, 205413 (2015).

    ADS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (project no. 18-72-00157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Babichev.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babichev, A.V., Kadinskaya, S.A., Shubina, K.Y. et al. A Study of the Photoresponse in Graphene Produced by Chemical Vapor Deposition. Semiconductors 54, 991–998 (2020). https://doi.org/10.1134/S1063782620090031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620090031

Keywords:

Navigation