Skip to main content
Log in

Terahertz Dispersion and Amplification under Electron Streaming in Graphene at 300 K

  • XXIV INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 10–13, 2020
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We interpret the recent observations of Otsuji’s team (Sendai) on switching from absorption to amplification at a temperature of T = 300 K during the passage of terahertz radiation through hexagonal boron nitride–graphene sandwiches with multiple gates on the surface with an increase in the electric field in graphene. It is shown that these effects are related to dispersion and negative conductivity near the transit-time frequency of electrons in momentum space under streaming (anisotropic distribution) in graphene in a strong electric field. On the basis of these data, a universal tunable terahertz source is proposed, which has the form of a graphene-containing sandwich with a high-resistance silicon wafer (a cavity) with an applied voltage. This terahertz cavity is a complete analog of the microwave generator implemented on an InP chip by Vorobev’s team (St. Petersburg).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. Boubanga-Tombet, D. Yadav, W. Knap, V. V. Popov, and T. Otsuji, arXiv: 1801.04518 (2018).

  2. M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993).

    Article  ADS  Google Scholar 

  3. M. Dyakonov and M. Shur, IEEE Trans. Electron. Dev. 43, 380 (1996).

    Article  ADS  Google Scholar 

  4. M. A. Yamoah, W. Yang, E. Pop, and D. Goldhaber-Gordon, ACS Nano 11, 9914 (2017).

    Article  Google Scholar 

  5. V. Perebeinos and P. Avouris, Phys. Rev. B 81, 195442 (2010).

    Article  ADS  Google Scholar 

  6. V. Ryzhii, A. Satou, and T. Otsuji, J. Appl. Phys. 101, 024509 (2007).

    Article  ADS  Google Scholar 

  7. L. E. Vorob’ev, S. N. Danilov, V. N. Tulupenko, and D. A. Firsov, JETP Lett. 73, 219 (2001).

    Article  ADS  Google Scholar 

  8. T. Kurosawa, J. Phys. Soc. Jpn. 31, 668 (1971).

    Article  ADS  Google Scholar 

  9. A. A. Andronov, Sov. Phys. Semicond. 21, 701 (1987).

    Google Scholar 

  10. A. A. Andronov, in Electrons and Phonons, Ed. by C. V. Shank, B. Pachar, and B. P. Zakharchenya (Elsevier, Amsterdam, 1992), Chap. 4, p. 169.

    Google Scholar 

  11. J. Chauhan and J. Guo, Appl. Phys. Lett. 95, 023120 (2009).

    Article  ADS  Google Scholar 

  12. T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006).

    Article  ADS  Google Scholar 

  13. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 110 (2009).

    Article  ADS  Google Scholar 

  14. A. Shaffique, E. H. Hwang, V. M. Galitski, and S. Das Sarma, Proc. Natl. Acad. Sci. U. S. A. 104, 18382 (2007).

    Article  Google Scholar 

  15. A. A. Andronov and V. A. Kozlov, JETP Lett. 17, 87 (1973).

    ADS  Google Scholar 

  16. E. V. Starikov and P. Shiktorov, Sov. Phys. Semicond. 17, 1355 (1983).

    Google Scholar 

  17. Y. K. Pozhela, E. V. Starikov, and P. N. Shiktorov, Semicond. Sci. Technol. 7, B386 (1992).

    Article  Google Scholar 

  18. E. V. Starikov, P. N. Shiktorov, V. Gruzinskis, L. Reggiani, L. Varani, J. C. Vaissiere, and J. H. Zhao, IEEE Trans. Electron. Dev. 48, 438 (2001).

    Article  ADS  Google Scholar 

  19. V. L. Kustov, V. I. Ryzhii, and Yu. S. Sigov, Sov. Phys. JETP 52, 1207 (1980).

    ADS  Google Scholar 

  20. A. A. Andronov, Sov. Phys. JETP 28, 260 (1968).

    ADS  Google Scholar 

  21. D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltzman, A. K. Geim, and G. Fedorov, Nat. Commun. 9, 5392 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.I. Gavrilenko (Institute for Physics of Microstructures, Russian Academy of Sciences) who drew our attention to studies [1, 20], M.A. Novikov, A.M. Klushin (Institute for Physics of Microstructures, Russian Academy of Sciences), M.Yu. Glyavin and A. Fedotov (Institute of Applied Physics, Russian Academy of Sciences) for interest in our work, V.I. Ryzhii (Institute of Microwave Semiconductor Electronics, Russian Academy of Sciences) and V.V. Kurin (Institute for Physics of Microstructures, Russian Academy of Sciences) for discussion and comments to the work.

Funding

This study was carried out as part of the state contract of the Institute for Physics of Microstructures, Russian Academy of Sciences no. 0035-2019-0021-S-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Andronov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andronov, A.A., Pozdniakova, V.I. Terahertz Dispersion and Amplification under Electron Streaming in Graphene at 300 K. Semiconductors 54, 1078–1085 (2020). https://doi.org/10.1134/S106378262009002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378262009002X

Keywords:

Navigation