Skip to main content
Log in

Elemental, Optical, and Electrochemical Study of CH3NH3PbI3 Perovskite-Based Hole Transport Layer-Free Photodiode

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

In the present work, we have fabricated and characterized in the development of methylammonium lead iodide (CH3NH3PbI3) perovskite-based hole transport layer (HTL)-free photodiode with configuration (FTO|CH3NH3PbI3|PC60BM{[6,6]-phenyl-C60-butyric acid methyl ester}|Al. The one-step spin coating technique has been used for the deposition of the precursor solution including methylammonium iodide and lead iodide with molar ratio 3:1 to prepare the perovskite thin films onto FTO-substrate. The elemental study has been done by EDX spectroscopy. Furthermore, surface morphology of CH3NH3PbI3 thin film has been characterized with the importance of photovoltaic parameters such as charge carrier mobility, saturation current, and barrier height, by I(V) measurements. The expected rectification and photo response behavior has been analyzed from energy level diagram of the materials. The device demonstrates good photo response and exhibits saturation current in the value of 4.5 × 10–4 mA and mobility of 5.27 × 10–4 cm2 V–1 s–1, respectively. Moreover, the charge carrier lifetime has been calculated of 7.81 × 10–4 s by electrochemical impedance spectroscopy (EIS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. F. M. Noh, C. H. Teh, R. Daik, E. L. Lim, C. C. Yap, M. A. Ibrahim, Y. Mohd, A. R. B. Jang, R. Rachchh, M. Kumar, and B. Tripathi, Energy Convers. Manage. 115, 244 (2016).

    Google Scholar 

  2. T. Ibn-Mohammed, S. C. L. Koh, I. M. Reaney, A. Acquaye, G. Schileo, K. B. Mustapha, and R. Greenough, Renewable Sustainable Energy Rev. 80, 1321 (2017).

    Google Scholar 

  3. A. Upadhyaya, C. M. S. Negi, A. Yadav, S. K. Gupta, and A. S. Verma, Superlatt. Microstruct. 122, 410 (2018).

    ADS  Google Scholar 

  4. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, and Z. Lin, Mater. Today 18, 155 (2015).

    Google Scholar 

  5. H. Tang, S. He, and C. Peng, Nanoscale Res. Lett. 12, 410 (2017).

    ADS  Google Scholar 

  6. M. Imamzai, M. Aghaei, Y. H. M. Thayoob, and M. Forouzanfar, in Proceedings of the National Graduate Conference NatGrad 2012 (2012), p. 1.

  7. N. Kour and R. Mehra, Intl. Res. J. Engg Technol. 4, 1284 (2017).

    Google Scholar 

  8. L. Qiu, L. K. Ono, and Y. Qi, Mater. Today Energy 7, 169 (2018).

    Google Scholar 

  9. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, Nat. Commun. 4, 2761 (2013).

    ADS  Google Scholar 

  10. M. Hariadi, I. Dzikri, R. W. Purnamaningsih, and N. R. Poespawati, E3S Web of Conf. 67, 01022 (2018).

  11. Z. Zhao, W. Sun, Y. Li, S. Ye, H. Rao, F. Gu, Z. Liu, Z. Bian, and C. Huang, J. Mater. Chem. A 5, 4756 (2017).

    Google Scholar 

  12. Y. Shirahata, AIP Conf. Proc. 2067, 020017 (2019).

    Google Scholar 

  13. Y. Zhu, K. Deng, H. Sun, B. Gu, H. Lu, F. Cao, J. Xiong, and L. Li, Adv. Sci. 5, 1700614 (2018).

    Google Scholar 

  14. S. Kang, J. Jeong, S. Cho, Y. J. Yoon, S. Park, S. Lim, J. Y. Kim, and H. Ko, J. Mater. Chem. A 7, 1107 (2019).

    Google Scholar 

  15. Q. Tai, T. A. N. G. Kai-Chi, and F. Yan, Energy Environ. Sci. 8, 2375 (2019).

    Google Scholar 

  16. P. Vivo, J. Salunke, and A. Priimagi, Materials 10, 1087 (2017).

    Google Scholar 

  17. Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, Appl. Phys. Express 7, 032302 (2014).

    ADS  Google Scholar 

  18. . Shukla, V. K. Sharma, S. K. Gupta, and A. S. Verma, Mater. Res. Express 6, 126323 (2020)

    Google Scholar 

  19. S. De Wolf, J. Holovsky, S. J. Moon, P. Löper, B. Niesen, M. Ledinsky, and C. Ballif, J. Phys. Chem. Lett. 5, 1035 (2014).

    Google Scholar 

  20. T. Ava, A. Al Mamun, S. Marsillac, and G. Namkoong, Appl. Sci. 9, 188 (2019).

    Google Scholar 

  21. R. Cheacharoen, C. C. Boyd, G. F. Burkhard, T. Leijtens, J. A. Raiford, K. A. Bush, S. F. Bent, and M. D. McGehee, Sustainable Energy Fuels 2, 2398 (2018).

    Google Scholar 

  22. K. P. Bhandari and R. J. Ellingson, in A Comprehensive Guide to Solar Energy Systems (Academic, New York, 2018), p. 233.

    Google Scholar 

  23. M. D. Tyona, Adv. Mater. Res. 2, 195 (2013).

    Google Scholar 

  24. M. T. Hoerantner, E. Wassweiler, H. Zhang, A. Panda, M. Nasilowski, A. Osherov, R. Swartwout, A. E. Driscoll, N. S. Moody, M. G. Bewandi, K. F. Jensen, and V. Bulović, ACS Appl. Mater. Interfaces 11, 32928 (2019).

    Google Scholar 

  25. H. C. Liao, P. Guo, C. P. Hsu, M. Lin, B. Wang, L. Zeng, and M. R. Wasielewski, Adv. Energy Mater. 7, 1601660 (2017).

    Google Scholar 

  26. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, and M. Grätzel, Science (Washington, DC, U. S.) 345, 295 (2014).

    ADS  Google Scholar 

  27. D. K. Mohamad, J. Griffin, C. Bracher, A. T. Barrows, and D. G. Lidzey, Adv. Energy Mater. 6, 1600994 (2016).

    Google Scholar 

  28. J. H. Kim, S. T. Williams, N. Cho, C. C. Chueh, and A. K. Y. Jen, Adv. Energy Mater. 5, 1401229 (2015).

    Google Scholar 

  29. Z. Yang, C. C. Chueh, F. Zuo, J. H. Kim, P. W. Liang, and A. K. Y. Jen, Adv. Energy Mater. 5, 1500328 (2015).

    Google Scholar 

  30. T. M. Schmidt, T. T. Larsen-Olsen, J. E. Carlé, D. Angmo, and F. C. Krebs, Adv. Energy Mater. 5, 1500569 (2015).

    Google Scholar 

  31. J. Ciro, M. A. Mejía-Escobar, and F. Jaramillo, Solar Energy 150, 570 (2017).

    ADS  Google Scholar 

  32. R. Swartwout, M. T. Hoerantner, and V. Bulović, Energy Environ. Mater. 2, 119 (2019).

    Google Scholar 

  33. Y. Wen, Y. G. Tang, and G. Q. Yan, AIP Adv. 8, 095226 (2018).

    ADS  Google Scholar 

  34. A. Sadula, B. Azzopardi, and J. Chircop, in Proceedings of the IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC (2018), p. 1090.

  35. Z. Lu, S. Wang, H. Liu, F. Feng, and W. Li, Nanomaterials 9, 204 (2019).

    Google Scholar 

  36. Z. Shi and A. Jayatissa, Materials 11, 729 (2018).

    ADS  Google Scholar 

  37. J. Huang, S. Xiang, J. Yu, and C. Z. Li, Energy Environ. Sci. 12, 929 (2019).

    Google Scholar 

  38. H. Wang and D. H. Kim, Chem. Soc. Rev. 46, 5204 (2017).

    Google Scholar 

  39. Y. H. Kim, H. Cho, and T. W. Lee, Proc. Natl. Acad. Sci. U. S. A. 113, 11694 (2016).

    ADS  Google Scholar 

  40. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).

    Google Scholar 

  41. X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, and Y. Xie, Adv. Funct. Mater. 24, 7373 (2014).

    Google Scholar 

  42. F. Hu, H. Zhang, C. Sun, C. Yin, B. Lv, C. Zhang, and M. Xiao, ACS Nano 9, 12410 (2015).

    Google Scholar 

  43. H. Gommans, B. Verreet, B. P. Rand, R. Muller, J. Poortmans, P. Heremans, and J. Genoe, Adv. Funct. Mater. 18, 3686 (2008).

    Google Scholar 

  44. R. Gottesman, P. Lopez-Varo, L. Gouda, J. A. Jimenez-Tejada, J. Hu, S. Tirosh, and J. Bisquert, Chem. 1, 776 (2016).

    Google Scholar 

  45. W. A. Laban and L. Etgar, Energy Environ. Sci. 6, 3249 (2013).

    Google Scholar 

  46. J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, and Q. Meng, Appl. Phys. Lett. 104, 063901 (2014).

    ADS  Google Scholar 

  47. D. Liu, J. Yang, and T. L. Kelly, J. Am. Chem. Soc. 136, 17116 (2014).

    Google Scholar 

  48. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, and M. Grätzel, Science (Washington, DC, U. S.) 345, 295 (2014).

    ADS  Google Scholar 

  49. X. Bao, Q. Zhu, M. Qiu, A. Yang, Y. Wang, D. Zhu, and R. Yang, J. Mater. Chem. A 3, 19294 (2015).

    Google Scholar 

  50. R. Wu, J. Yang, J. Xiong, P. Liu, C. Zhou, H. Huang, and B. Yang, Org. Electron. 26, 265 (2015).

    Google Scholar 

  51. W. Ke, G. Fang, J. Wan, H. Tao, Q. Liu, L. Xiong, and M. Qin, Nat. Commun. 6, 6700 (2015).

    ADS  Google Scholar 

  52. Y. C. Wang, X. Li, L. Zhu, X. Liu, W. Zhang, and J. Fang, Adv. Energy Mater. 7, 1701144 (2017).

    Google Scholar 

  53. A. Upadhyaya, C. M. S. Negi, A. Yadav, S. K. Gupta, and A. S. Verma, Semicond. Sci. Technol. 33, 065012 (2018).

    ADS  Google Scholar 

  54. K. A. Parrey, A. Aziz, S. G. Ansari, S. H. Mir, A. Khosla, and A. Niazi, J. Electrochem. Soc. 165, B3023 (2018).

    Google Scholar 

  55. K. T. Butler, J. M. Frost, and A. Walsh, Mater. Horizons 2, 228 (2015).

    Google Scholar 

  56. T. Wang, B. Daiber, J. M. Frost, S. A. Mann, E. C. Garnett, A. Walsh, and B. Ehrler, Energy Environ. Sci. 10, 509 (2017).

    Google Scholar 

  57. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).

    ADS  Google Scholar 

  58. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, and T. J. White, J. Mater. Chem. A 1, 5628 (2013).

    Google Scholar 

  59. Y. Zhang, X. Hu, L. Chen, Z. Huang, Q. Fu, Y. Liu, and Y. Chen, Org. Electron. 30, 281 (2016).

    Google Scholar 

  60. T. Oku, in Solar Cells–New Approaches and Reviews, Ed. by L. A. Kosyachenko (InTech Open, Rijeka, Croatia, 2015), Ch. 3, p. 77.

    Google Scholar 

  61. J. Chaudhary, R. Gautam, S. Choudhary, and A. S. Verma, Eur. Phys. J. Appl. Phys. 88, 30101 (2019).

    ADS  Google Scholar 

  62. P. K. Singh, R. Singh, V. Singh, S. K. Tomar, B. Bhattacharya, and Z. H. Khan, Mater. Res. Bull. 89, 292 (2017).

    Google Scholar 

  63. L. Q. Xie, T. Y. Zhang, L. Chen, N. Guo, Y. Wang, G. K. Liu, and B. W. Mao, Phys. Chem. Chem. Phys. 18, 18112 (2016).

    Google Scholar 

  64. T. Chen, B. J. Foley, B. Ipek, M. Tyagi, J. R. Copley, C. M. Brown, and S. H. Lee, Phys. Chem. Chem. Phys. 17, 31278 (2015).

    Google Scholar 

  65. M. G. Helander, M. T. Greiner, Z. B. Wang, W. M. Tang, and Z. H. Lu, J. Vacuum Sci. Technol. A 29, 011019 (2011).

    ADS  Google Scholar 

  66. K. Harada, A. G. Werner, M. Pfeiffer, C. J. Bloom, C. M. Elliott, and K. Leo, Phys. Rev. Lett. 94, 036601 (2005).

    ADS  Google Scholar 

  67. G. W. Kim, D. V. Shinde, and T. Park, RSC Adv. 5, 99356 (2015).

  68. L. M. Herz, ACS Energy Lett. 2, 1539 (2017).

    Google Scholar 

  69. K. Neumann and M. Thelakkat, RSC Adv. 4, 43550 (2014).

  70. J. Chaudhary, S. Choudhary, C. M. S. Negi, S. K. Gupta, and A. S. Verma, Phys. Scr. 94, 105821 (2019).

    ADS  Google Scholar 

  71. N. Sharma, C. M. S. Negi, A. S. Verma, and S. K. Gupta, J. Electron. Mater. 47, 7023 (2018).

    ADS  Google Scholar 

  72. W. Brütting, S. Berleb, and A. G. Mückl, Org. Electron. 2, 1 (2001).

    Google Scholar 

  73. P. Rathore, C. M. S. Negi, A. S. Verma, A. Singh, G. Chauhan, A. R. Inigo, and S. K. Gupta, Mater. Res. Express 4, 085905 (2017).

    ADS  Google Scholar 

  74. Z. Chiguvare and J. Parisi, Zeitschr. Naturf. A 67, 589 (2012).

    ADS  Google Scholar 

  75. X. Zhang, S. Bi, J. Zhou, S. You, H. Zhou, Y. Zhang, and Z. Tang, J. Mater. Chem. C 5, 9376 (2017).

    Google Scholar 

  76. J. Peng, Y. Chen, K. Zheng, T. Pullerits, and Z. Liang, Chem. Soc. Rev. 46, 5714 (2017).

    Google Scholar 

  77. S. R. Raga and Y. Qi, J. Phys. Chem. C 120, 28519 (2016).

    Google Scholar 

  78. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, and J. Huang, Energy Environ. Sci. 7, 2619 (2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Dr. Ajay Singh  Verma is thankful to UGC-DAE Consortium of Scientific Research India, for supporting this research under the scheme of UGC-CRS (letter no. CSR/IC/BL-88/CRS-205/909).

Funding

The authors would like to thank the Department of Science and Technology (DST) for providing the financial support from under the CURIE program (grant no. SR/CURIE-Phase-III/01/2015(G)), and MHRD FAST program (grant no. 5-5/2014-TS.VII), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Verma.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, J., Choudhary, S., Agrawal, B. et al. Elemental, Optical, and Electrochemical Study of CH3NH3PbI3 Perovskite-Based Hole Transport Layer-Free Photodiode. Semiconductors 54, 1023–1031 (2020). https://doi.org/10.1134/S1063782620090055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620090055

Keywords:

Navigation