Skip to main content
Log in

Weirs Control Phosphorus Transfer in Agricultural Watersheds

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sediments may act as a source or sink of ions from water, especially phosphorus (P). After the erosion process, the challenge is to retain suspended sediments inside the watershed area. We hypothesize that weir structures may mitigate P transfer from agricultural soils to aquatic systems. To test this, the present work aimed to evaluate P chemical fractions present in bottom sediments retained in the water reservoir of weirs built in two intensive agricultural watersheds and we discuss the sink/source behavior of these sediments. Samples of bottom sediments were collected from 12 reservoirs of weirs in two smalls Brazilian watersheds. Chemical P fractionation including adsorption and desorption kinetics was performed. Total P varied from 398 to 958 mg kg−1. The easily and potentially desorbed phosphorus were correlated with the clay content and the concentrations of Fe, Mn, and Al, extracted by ammonium oxalate and dithionite-citrate-bicarbonate solutions, which are the carriers of highly reactive functional groups with phosphate. Bottom sediments have high maximum adsorption capacity under unrestricted phosphorus supply condition, while under natural condition (low anthropogenic pressure), the sediments were not saturated and therefore low desorption occurred. Only 1.34% and 7.75% of total P was in readily and potentially bioavailable P forms. The bottom sediments accumulated in reservoirs from anthropogenic areas acted as P source to water, while those from preserved areas (natural pasture or riparian forest) acted as sink of P from water. The storage of water and sediment contaminated with P in reservoir of weirs may be an efficient and temporary practice to mitigate the transfer of P to watercourses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • American Public Health Association (APHA). (2005). Standard methods for the examination of water and wastewater. 21th. Denver: AWWA.

    Google Scholar 

  • Andersen, J. M. (1976). An ignition method for determination of total phosphorus in lake sediments. Water Research, 10, 329–331.

    CAS  Google Scholar 

  • Andrade, L. C., Tiecher, T., Oliveira, J. S., Andreazza, R., Inda, A. V., & Camargo, F. A. O. (2018). Sediment pollution in margins of the Lake Guaíba, Southern Brazil. Environmental Monitoring and Assessment, 190, 3. https://doi.org/10.1007/s10661-017-6365-9.

    Article  CAS  Google Scholar 

  • Baker, B. H., Kröger, R., Prevost, J. D., Pierce, T., Ramirez-Avila, J. J., Czarnecki, J. M. P., Faust, D., & Flora, C. (2016). A field-scale investigation of nutrient and sediment reduction efficiencies of a low-technology best management practice: low-grade weirs. Ecological Engineering, 91, 240–248.

    Google Scholar 

  • Ballantine, D., Walling, D. E., & Leeks, G. J. (2009). Mobilization and transport of sediment-associated phosphorus by surface runoff. Water, Air & Soil Pollution, 196, 311–320.

    CAS  Google Scholar 

  • Belmont, M. A., White, J. R., & Reddy, K. R. (2009). Phosphorus sorption and potential phosphorus storage in sediments of Lake Istokpoga and the upper chain of lakes, Florida, USA. Journal of Environmental Quality, 38, 987–996.

    CAS  Google Scholar 

  • Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Van Oost, K., Montanarella, L., & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8, 1. https://doi.org/10.1038/s41467-017-02142-7.

    Article  CAS  Google Scholar 

  • Bortoluzzi, E. C., Santos, M. A. S., & Villetti, M. A. (2010). Sediment characterization. In C. Poleto & S. Charlesworth (Eds.), Sedimentology of aqueous systems (pp. 80–107). Hoboken: Wiley-Blackwell.

    Google Scholar 

  • Bortoluzzi, E. C., Rheinheimer, D. S., Santanna, M. A., & Caner, L. (2013). Mineralogy and nutrient desorption of suspended sediments during a storm event. Journal of Soils and Sediments, 13, 1093–1105.

    CAS  Google Scholar 

  • Bortoluzzi, E. C., Pérez, C. A., Ardisson, J. D., Tiecher, T., & Caner, L. (2015). Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils. Applied Clay Science, 104, 196–204.

    CAS  Google Scholar 

  • Bostic, E. M., & White, J. R. (2007). Soil phosphorus and vegetation influence on wetland phosphorus release after simulated drought. Soil Science Society of America Journal, 71, 238–244.

    CAS  Google Scholar 

  • Boström, B., Andersen, J. M., Fleischer, S., & Jansson, M. (1988). Exchange of phosphorus across the sediment-water interface. Hydrobiologia, 170, 229–244.

    Google Scholar 

  • Brennan, R. B., Scott, J. T., Sharpley, A. N., Lally, H. T., Jarvie, H. P., Bowes, M. J., Haggard, B. E., & Gbur, E. (2017). Linking soil erosion to instream dissolved phosphorus cycling and periphyton growth. JAWRA Journal of the American Water Resources Association, 53(4), 809–821.

    CAS  Google Scholar 

  • Britzke, D., Silva, L. S., Moterle, D. F., Rheinheimer, D. S., & Bortoluzzi, E. C. (2012). A study of potassium dynamics and mineralogy in soils from subtropical Brazilian lowlands. Journal of Soils and Sediments, 12, 185–197. https://doi.org/10.1007/s11368-011-0431-7.

    Article  CAS  Google Scholar 

  • Brookes, P. C., & Powlson, D. S. (1981). Preventing phosphorus losses during perchloric acid digestion of sodium bicarbonate soil extracts. Journal of the Science of Food and Agriculture, 32, 671–674.

    CAS  Google Scholar 

  • Capoane, V., & Rheinheimer, D. S. (2012). Análise qualitativa do uso e ocupação da terra no assentamento Alvorada , Júlio de Castilhos – Rio Grande do Sul. Nera, 20, 193–205.

    Google Scholar 

  • Condron, L. M., Goh, K. M., & Newman, R. H. (1985). Nature and distribution of soil phosphorus as revealed by a sequential extraction method followed by 31P nuclear magnetic resonance analysis. Journal of Soil Science, 36, 99–207.

    Google Scholar 

  • Correll, D. L. (1998). The role of phosphorus in the eutrophication of receiving waters: A review. Journal of Environmental Quality, 27, 261–266.

    CAS  Google Scholar 

  • Dalacorte, L., Escosteguy, P. A. V., & Bortoluzzi, E. C. (2019). Sorption of copper and zinc from aqueous solution by metabasalt residue and its mineralogical behavior. Water, Air & Soil Pollution, 230, 90.

    Google Scholar 

  • Dapeng, L., Yong, H., Chengxin, F., & Yan, Y. (2011). Contributions of phosphorus on sedimentary phosphorus bioavailability under sediment resuspension conditions. Chemical Engineering Journal, 168, 1049–1054.

    Google Scholar 

  • Dick, W. A., & Tabatabai, M. A. (1977). Determination of orthophosphate in aqueous solutions containing labile organic and inorganic phosphorus compounds. Journal of Environmental Quality, 6, 82–85.

    CAS  Google Scholar 

  • Didoné, E. J., Minella, J. P. G., Schneider, F. J. A., Londero, A. L., Lefèvre, I., & Evrard, O. (2019). Quantifying the impact of no-tillage on soil redistribution in a cultivated catchment of Southern Brazil (1964–2016) with 137Cs inventory measurements. Agriculture, Ecosystems and Environment, 284(2019), 106588. https://doi.org/10.1016/j.agee.2019.106588.

  • Gérard, F. (2016). Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils - a myth revisited. Geoderma, 262, 213–226.

    Google Scholar 

  • Hedley, M. J., Stewart, J. W. B., & Chauhan, B. S. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46, 970.

    CAS  Google Scholar 

  • Huang, L., Fang, H., & Reible, D. (2015). Mathematical model for interactions and transport of phosphorus and sediment in the Three Gorges Reservoir. Water Research, 85, 393–403. https://doi.org/10.1016/j.watres.2015.08.049.

  • Jiang, X., Jin, X. C., Yao, Y., Li, L. H., & Wu, F. C. (2006). Effects of oxygen on the release and distribution of phosphorus in the sediments under the light condition. Environmental Pollution, 141, 482–487.

    CAS  Google Scholar 

  • Joseph, L., Jun, B.-M., Flora, J. R. V., Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: a review. Chemosphere, 229, 142–159.

    CAS  Google Scholar 

  • Kim, L. H., Choi, E., & Stenstrom, M. K. (2003). Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere, 50, 53–61.

    CAS  Google Scholar 

  • Koski-Vähälä, J., & Hartikainen, H. (2001). Assessment of the risk of phosphorus loading due to resuspended sediment. Journal of Environmental Quality, 30, 960.

    Google Scholar 

  • Kroth, P. L. (1998). Disponibilidade de fósforono solo para plantas e fatores que afetam a extração por resina de troca em membrana. 167 f. Universidade Federal do Rio Grande do Sul, Porto Alegre.

  • Kröger, R., Dunne, E. J., Novak, J., et al. (2013a). Downstream approaches to phosphorus management in agricultural landscapes: regional applicability and use. Science of the Total Environment, 442, 263–274.

    Google Scholar 

  • Kröger, R., Usborne, E. L., & Pierce, S. C. (2013b). Sediment and phosphorus accumulation dynamics behind newly installed low-grade weirs in agricultural drainage ditches. Journal of Environment Quality, 42(5), 1480–1485.

    Google Scholar 

  • Liu, Q., Liu, S., Zhao, H., Deng, L., Wang, C., Zhao, Q., & Dong, S. (2015). The phosphorus speciations in the sediments up- and down-stream of cascade dams along the middle Lancang River. Chemosphere, 120, 653–659.

    CAS  Google Scholar 

  • Malecki, L. M., White, J. R., & Reddy, K. R. (2004). Nitrogen and phosphorus flux rates from sediment in the lower St. Johns River Estuary. Journal of Environmental Quality, 33, 1545–1555.

    CAS  Google Scholar 

  • Mcdowell, R. W., & Sharpley, A. N. (2001). A comparison of fluvial sediment phosphorus (P) chemistry in relation to location and potential to influence stream P concentrations. Aquatic Geochemistry, 7, 255–265.

    CAS  Google Scholar 

  • Mckean, S. J., & Warren, G. P. (1996). Determination of phosphate desorption characteristics in soils using successive resin extractions. Communications in Soil Science and Plant Analysis, 27, 2397–2417.

    CAS  Google Scholar 

  • Mehra, O. P., & Jackson, M. L., (1960). Iron oxide removal from soils and clays by dithionite–citrate system buffered with sodium bicarbonate. In: Proceedings of 7th National Conference of Clays and Clay Minerals, (pp. 317–327). National Academy of Science and Natural Resources Publications, Washington, DC.

  • Muggler, C. C., Pape, T., & Buurman, P. (1997). Laser grain-size determination in soil genetic studies. 2. Clay content, clay formation, and aggregation in some Brazilian oxisols. Soil Science, 162, 219–228.

    CAS  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    CAS  Google Scholar 

  • Pant, H. K., & Reddy, K. R. (2001). Phosphorus sorption characteristics of estuarine sediments under different redox conditions. Journal of Environmental Quality, 30, 1474–1480.

    CAS  Google Scholar 

  • Pant, H. K., Reddy, K. R., & Dierberg, F. E. (2002). Bioavailability of organic phosphorus in a submerged aquatic vegetation-dominated treatment wetland. Journal of Environmental Quality, 31, 1748–1756.

    CAS  Google Scholar 

  • Pellegrini, J. B. R., Dos Santos, D. R., Gonçalves, C. S., Copetti, A. C. C., Bortoluzzi, E. C., & Tessier, D. (2010). Impacts of anthropic pressures on soil phosphorus availability, concentration, and phosphorus forms in sediments in a Southern Brazilian watershed. Journal of Soils and Sediments, 10, 451–460.

    CAS  Google Scholar 

  • Perez, C., Antelo, J., Fiol, S., & Arce, F. (2014). Modelling oxyanion adsorption on ferralic soil, part 1: parameters validation with phosphate ion. Environmental Toxicology and Chemistry, 33, 2208–2216.

    CAS  Google Scholar 

  • Postolachi, L., Rusu, V., & Lupascu, T. (2013). Distribution of phosphorus forms in water-particulate materials-bottom sediments system of the Prut river during 2009-2012 years. Chemistry Journal of Moldova, 8, 57–66.

    CAS  Google Scholar 

  • Qian, Y., Liang, X., Chen, Y., Lou, L., Cui, X., Tang, J., Li, P., & Cao, R. (2011). Significance of biological effects on phosphorus transformation processes at the water–sediment interface under different environmental conditions. Ecological Engineering, 37, 816–825.

    Google Scholar 

  • Rasche J. W. A. (2014). Transferência de fósforo em pequenas bacias hidrográficas com predomínio de sistema plantio direto precário. p. 202. Thesis. Universidade Federal de Santa Maria, Santa Maria.

  • Rheinheimer, D. S., Gatiboni, L. C., & Kaminski, J. (2008). Fatores que afetam a disponibilidade do fósforo e o manejo da adubação fosfatada em solos sob sistema plantio direto. Ciência Rural, 38, 576–586.

    Google Scholar 

  • Rheinheimer, D. S., Fornari, M. R., Bastos, M. C., Fernandes, G., Santanna, M. A., Calegari, A., Canallib, L. B. S., Caner, L., Labanowsk, J., & Tiecher, T. (2019). Phosphorus distribution after three decades of different soil management and cover crops in subtropical region. Soil and Tillage Research, 192, 33–41.

    Google Scholar 

  • Rossato, M. S. (2011). Os climas do Rio Grande do Sul: variabilidade, tendências e tipologia. 240 f. Tese (Doutorado em Geografia) – Departamento de Geografia, Universidade Federal do Rio Grande do Sul, Porto Alegre.

  • Rusu, V., Postolachi, L., Povar, I., Alder, A., & Lupascu, T. (2012). Dynamics of phosphorus forms in the bottom sediments and their interstitial water for the Prut River (Moldova). Environmental Science and Pollution Research, 19, 3126–3131.

    CAS  Google Scholar 

  • Rydin, E. (2000). Potentially mobile phosphorus in Lake Erken sediment. Water Research, 34, 2037–2042.

    CAS  Google Scholar 

  • Schwertmann, V. U. (1964). The differentiation of iron oxide in soils by a photochemical extraction with acid ammonium oxalate. Zeitschrift für Pflanzenernährung und Bodenkunde, 105, 194–201.

    CAS  Google Scholar 

  • Sharpley, A. N., Krogstad, T., Kleinman, P. J. A., Haggard, B., Shigaki, F., & Saporito, L. S. (2007). Managing natural processes in drainage ditches for nonpoint source phosphorus control. Journal of Soil and Water Conservation, 62(4), 197–206.

    Google Scholar 

  • Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506-509, 135–145.

    Google Scholar 

  • StatSoft Statistica. (2004). Data analysis software system, version 7. www.statsoft.com 2004.

  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. New Halen:Transactions: American Geophysical Union, 38, 913–920.

    Google Scholar 

  • Tonello, M. S., Hebner, T. S., Sterner, R. W., Brovold, S., Tiecher, T., Bortoluzzi, E. C., & Merten, G. H. (2020). Geochemistry and mineralogy of southwestern Lake Superior sediments with an emphasis on phosphorus lability. Journal of Soils and Sediments, 20, 1060–1073. https://doi.org/10.1007/s11368-019-02420-5.

    Article  CAS  Google Scholar 

  • Usborne, E. L., Kröger, R., Pierce, S. C., Brandt, J., & Goetz, D. (2013). Preliminary evidence of sediment and phosphorus dynamics behind newly installed low-grade weirs in agricultural drainage ditches. Water, Air, & Soil Pollution, 224(4), 1520–1531.

    Google Scholar 

  • USEPA. (1971). United states environmental protection agency. Methods of chemical analysis for water and wastes. Cincinnati: USEPA.

  • Vo, N. X. Q., Ji, Y., Van Doan, T., & Kang, H. (2014). Distribution of inorganic phosphorus fractions in sediments of the South Han River over a rainy season. Environmental Engineering Research, 19, 229–240.

    Google Scholar 

  • Walkley, A., & Black, L. A. (1934). An examination of the Dgtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    CAS  Google Scholar 

  • Wang, Q., & Li, Y. (2010). Phosphorus adsorption and desorption behavior on sediments of different origins. Journal of Soils and Sediments, 10, 1159–1173.

    CAS  Google Scholar 

  • Wang, J., & Pant, H. K. (2011). Assessments of potential spatial-temporal variations in phosphorus distribution and fractionation in river bed sediments. CLEAN - Soil, Air, Water, 39(2), 148–156. https://doi.org/10.1002/clen.201000088.

  • Zafar, M., Tiecher, T., Capoane, V., Troian, A., & Rheinheimer, D. S. (2017). Characteristics, lability and distribution of phosphorus in suspended sediment from a subtropical catchment under diverse anthropic pressure in Southern Brazil. Ecological Engineering, 100, 28–45.

    Google Scholar 

  • Zhang, W., Shan, B., Li, J., Tang, W., Jin, X., Hang, H., Ding, Y., Wang, Y., & Zhu, X. (2015). Characteristics, distribution and ecological risk assessment of phosphorus in surface sediments from different ecosystems in Eastern China: a 31P-nuclear magnetic resonance study. Ecological Engineering, 75, 264–271.

    Google Scholar 

  • Zhou, Q., Gibson, C. E., & Zhu, Y. (2001). Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere, 42, 221–225.

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of Letícia Moro.

Funding

The authors thank the Coordination of Improvement of Higher-Level Personel, (CAPES-COFECUB program: 3504-11-5) and the National Council for Scientific and Technological Development (CNPq, Brazil) for financial support (458553/2014-0), as well as fellowships awarded to E.C. Bortoluzzi (304676/2019-5) and D.S. Rheinheimer (309515/2015-7). The authors acknowledge financial support from the European Union (ERDF) and “Région Nouvelle Aquitaine.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Campanhola Bortoluzzi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 7 Physical and chemical soil characteristics, in the 0–10 cm layer, in different soil use and management in the two watersheds from the south of Brazil

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, D.R., Schaefer, G.L., Pellegrini, A. et al. Weirs Control Phosphorus Transfer in Agricultural Watersheds. Water Air Soil Pollut 231, 486 (2020). https://doi.org/10.1007/s11270-020-04833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04833-2

Keywords

Navigation