Skip to main content
Log in

Detection of QTL for apple fruit acidity and sweetness using sensorial evaluation in multiple pedigreed full-sib families

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

A Correction to this article was published on 15 December 2020

This article has been updated

Abstract

Acidity and sweetness are important qualities for apple breeders and understanding their genetic regulation can improve the breeding process. In previous QTL studies, fruit quality assessments were performed using instrumental measurements, leading to the identification of two major QTL Ma and Ma3. Here, we use sensorial data to investigate the role of known and unknown genetic factors in the perception of acidity and sweetness in three pedigreed full-sib families. For 2 years, these families were phenotyped by a trained panel, at harvest and after 2 months of cold storage, and genotyped with a new 50 K SNP array. FlexQTLTM analyses using both an additive and an additive + dominance model resulted in the identification of Ma and Ma3 for acidity as well as sweetness, whereas the use of the additive model yielded decisive evidence for the discovery of two additional QTL on LG1 and LG6 for acidity. QTL genotypes were qualified as the inverse of each other, which indicates that individuals with the less-acidity alleles of Ma and Ma3 are perceived sweeter. Due to the genetic configuration in the families studied, resulting from a link with the Pale Green Disorder locus, no incomplete dominance effect could be detected for the Ma locus, although previously reported in the literature. For the Ma3 locus, however, an incomplete dominance effect (58%) is reported here for the first time. The Ma3 locus was also further confined to a 2–4-cM region and a predictive marker for this locus was identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  • Affymetrix Inc (2015) SNPolisher: tools for SNP classification, visualization and OTV genotyping. R Package version 1.5.2

  • Amyotte B, Bowen AJ, Banks T, Rajcan I, Somers DJ (2017) Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study. PLoS One 12:e0171710. https://doi.org/10.1371/journal.pone.0171710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aprea E, Charles M, Endrizzi I, Laura Corollaro M, Betta E, Biasioli F, Gasperi F (2017) Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds. Sci Rep 7:1–10. https://doi.org/10.1038/srep44950

    Article  CAS  Google Scholar 

  • Bai Y, Dougherty L, Li M (2012) A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Mol Gen Genomics 287:663–678. https://doi.org/10.1007/s00438-012-0707-7

    Article  CAS  Google Scholar 

  • Bianco L, Cestaro A, Linsmith G, Muranty H, Denancé C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, Van De Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M (2016) Development and validation of the Axiom®Apple480K SNP genotyping array. Plant J 86:62–74. https://doi.org/10.1111/tpj.13145

    Article  CAS  PubMed  Google Scholar 

  • Bink MCAM, Boer MP, Ter Braak CJF, Jansen J, Voorrips RE, Van De Weg WE (2008) Bayesian analysis of complex traits in pedigreed plant populations. Euphytica 161:85–96. https://doi.org/10.1007/s10681-007-9516-1

    Article  Google Scholar 

  • Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel CE, Kouassi AB, Laurens F, Mathis F, Gessler C, Gobbin D, Rezzonico F, Patocchi A, Kellerhals M, Boudichevskaia A, Dunemann F, Peil A, Nowicka A, Lata B, Stankiewicz-Kosyl M, Jeziorek K, Pitera E, Soska A, Tomala K, Evans KM, Fernández-Fernández F, Guerra W, Korbin M, Keller S, Lewandowski M, Plocharski W, Rutkowski K, Zurawicz E, Costa F, Sansavini S, Tartarini S, Komjanc M, Mott D, Antofie A, Lateur M, Rondia A, Gianfranceschi L, Van De Weg WE (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet 127:1073–1090. https://doi.org/10.1007/s00122-014-2281-3

    Article  CAS  PubMed  Google Scholar 

  • Buti M, Poles L, Caset D, Magnago P, Fernandez Fernandez F, Colgan RJ, Velasco R, Sargent DJ (2015) Identification and validation of a QTL influencing bitter pit symptoms in apple (Malus × domestica). Mol Breed 35:1–23. https://doi.org/10.1007/s11032-015-0258-9

    Article  Google Scholar 

  • Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M, Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA (2012) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12:12. https://doi.org/10.1186/1471-2229-12-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chagné D, Dayatilake D, Diack R, Oliver M, Ireland H, Watson A, Gardiner SE, Johnston JW, Schaffer RJ, Tustin S (2014) Genetic and environmental control of fruit maturation, dry matter and firmness in apple (Malus × domestica Borkh.). Hortic Res 1:1–12. https://doi.org/10.1038/hortres.2014.46

    Article  CAS  Google Scholar 

  • Chagné D, Kirk C, Whitworth C, Erasmuson S, Bicknell R, Sargent DJ, Kumar S, Troggio M (2015) Polyploid and aneuploid detection in apple using a single nucleotide polymorphism array. Tree Genet Genomes 11:94. https://doi.org/10.1007/s11295-015-0920-8

    Article  Google Scholar 

  • Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, Van De Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro EA, Gouzy J, Rees DJG, Guérif P, Muranty H, Durel CE, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, Van De Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106. https://doi.org/10.1038/ng.3886

    Article  CAS  PubMed  Google Scholar 

  • Di Guardo M, Bink MCAM, Guerra W, Letschka T, Lozano L, Busatto N, Poles L, Tadiello A, Bianco L, Visser RGF, Van De Weg E, Costa F (2017) Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association. J Exp Bot 68:1451–1466. https://doi.org/10.1093/jxb/erx017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Pierro EA, Gianfranceschi L, Di Guardo M, Koehorst-Van Putten HJ, Kruisselbrink JW, Longhi S, Troggio M, Bianco L, Muranty H, Pagliarani G, Tartarini S, Letschka T, Lozano Luis L, Garkava-Gustavsson L, Micheletti D, Bink MC, Voorrips RE, Aziz E, Velasco R, Laurens F, Van De Weg WE (2016) A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. Hortic Res 3. https://doi.org/10.1038/hortres.2016.57

  • Endelman JB, Plomion C (2014) LPmerge: An R package for merging genetic maps by linear programming. Bioinformatics 30:1623–1624. https://doi.org/10.1093/bioinformatics/btu091

    Article  CAS  PubMed  Google Scholar 

  • Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19:520–525. https://doi.org/10.1002/pca.1078

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Peace C, Rudell D, Verma S, Evans K (2015) QTLs detected for individual sugars and soluble solids content in apple. Mol Breed 35:1–13. https://doi.org/10.1007/s11032-015-0334-1

    Article  CAS  Google Scholar 

  • Harker FR, Marsh KB, Young H, Murray SH, Gunson FA, Walker SB (2002) Sensory interpretation of instrumental measurements 2 : sweet and acid taste of apple fruit Postharvest. Biol Technol 24:241–250. https://doi.org/10.1016/S0925-5214(01)00157-0

    Article  Google Scholar 

  • Jansen J, Boer MP, Bink MCAM, Van De Weg WE (2009) Searching for interacting QTL in related populations of an outbreeding species. Euphytica 166:131–144. https://doi.org/10.1007/s10681-008-9849-4

    Article  Google Scholar 

  • Jia D, Shen F, Wang Y, Wu T, Xu X, Zhang X, Han Z (2018) Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: MdSAUR37 , MdPP2CH and MdALMTII. Plant J 95:427–443. https://doi.org/10.1111/tpj.13957

    Article  CAS  PubMed  Google Scholar 

  • Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661. https://doi.org/10.1007/s11295-008-0140-6

    Article  Google Scholar 

  • Khan SA, Chibon PY, De Vos RCH, Schipper BA, Walraven E, Beekwilder J, Van Dijk T, Finkers R, Visser RGF, Van De Weg EW, Bovy A, Cestaro A, Velasco R, Jacobsen E, Schouten HJ (2012) Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16. J Exp Bot 63:2895–2908. https://doi.org/10.1093/jxb/err464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SA, Beekwilder J, Schaart JG, Mumm R, Soriano JM, Jacobsen E, Schouten HJ (2013) Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16. Tree Genet Genomes 9(2):475–487

  • King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevens E, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100:1074–1084. https://doi.org/10.1007/s001220051389

    Article  Google Scholar 

  • Kouassi AB, Durel CE, Costa F, Tartarini S, van de Weg E, Evans K, Fernandez-Fernandez F, Govan C, Boudichevskaja A, Dunemann F, Antofie A, Lateur M, Stankiewicz-Kosyl M, Soska A, Tomala K, Lewandowski M, Rutkovski K, Zurawicz E, Guerra W, Laurens F (2009) Estimation of genetic parameters and prediction of breeding values for apple fruit-quality traits using pedigreed plant material in Europe. Tree Genet Genomes 5:659–672. https://doi.org/10.1007/s11295-009-0217-x

    Article  Google Scholar 

  • Kunihisa M, Moriya S, Abe K, Okada K, Haji T, Hayashi T, Kim H, Nishitani C, Terakami S, Yamamoto T (2014) Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breed Sci 64:240–251. https://doi.org/10.1270/jsbbs.64.240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen B, Toldam-Andersen TB, Pedersen C, Ørgaard M (2017) Unravelling genetic diversity and cultivar parentage in the Danish apple gene bank collection. Tree Genet Genomes 13:14. https://doi.org/10.1007/s11295-016-1087-7

    Article  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. https://doi.org/10.1093/bioinformatics/btr509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Dougherty L, Coluccio AE, Meng D, El-Sharkawy I, Borejsza-Wysocka E, Liang D, Piñeros MA, Xu K, Cheng L (2020) Apple ALMT9 requires a conserved C-terminal domain for malate transport underlying fruit acidity. Plant Physiol 182:992–1006. https://doi.org/10.1104/pp.19.01300

    Article  CAS  PubMed  Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52:511–526. https://doi.org/10.1023/A:1024886500979

    Article  CAS  PubMed  Google Scholar 

  • Muranty H, Denancé C, Feugey L, Crépin JL, Barbier Y, Tartarini S, Ordidge M, Troggio M, Lateur M, Nybom H, Paprstein F, Laurens F, Durel CE (2020) Using whole-genome SNP data to reconstruct a large multi-generation pedigree in apple germplasm. BMC Plant Biol 20:1–18. https://doi.org/10.1186/s12870-019-2171-6

    Article  CAS  Google Scholar 

  • Orcheski B, Brown S (2017) High-throughput sequencing reveals that pale green lethal disorder in apple (Malus) stimulates stress responses and affects senescence. Tree Genet Genomes 13:9. https://doi.org/10.1007/s11295-016-1097-5

    Article  Google Scholar 

  • Orcheski B, Parker R, Brown S (2015) Pale green lethal disorder in apple (Malus) is caused by a mutation in the PHYLLO gene which is essential for phylloquinone (vitamin K1) biosynthesis. Tree Genet Genomes 11:131. https://doi.org/10.1007/s11295-015-0956-9

    Article  Google Scholar 

  • Peace CP, Luby JJ, van de Weg WE, Bink MCAM, Iezzoni AF (2014) A strategy for developing representative germplasm sets for systematic QTL validation, demonstrated for apple, peach, and sweet cherry. Tree Genet Genomes 10:1679–1694. https://doi.org/10.1007/s11295-014-0788-z

    Article  Google Scholar 

  • R Core Team (2018) R: A Language and Environment for Statistical Computing

  • Sun R, Chang Y, Yang F, Wang Y, Li H, Zhao Y, Chen D, Wu T, Zhang X, Han Z (2015) A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. BMC Genomics 16:1–15. https://doi.org/10.1186/s12864-015-1946-x

    Article  CAS  Google Scholar 

  • Tazawa J, Oshino H, Kon T, Kasai S, Kudo T, Hatsuyama Y (2019) Genetic characterization of flesh browning trait in apple using the non-browning cultivar ‘Aori 27 ’. Tree Genet Genomes 15:49. https://doi.org/10.1007/s11295-019-1356-3

    Article  Google Scholar 

  • Van Ooijen J (2006) Joinmap 4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Kyazma BV

  • Vanderzande S, Howard NP, Cai L, Da Silva Linge C, Antanaviciute L, Bink MCAM, Kruisselbrink JW, Bassil N, Gasic K, Iezzoni A, Van de Weg E, Peace C (2019) High-quality, genome-wide SNP genotypic data for pedigreed germplasm of the diploid outbreeding species apple, peach, and sweet cherry through a common workflow. PLoS One 14. https://doi.org/10.1371/journal.pone.0210928

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, MacAlma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van De Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839. https://doi.org/10.1038/ng.654

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Evans K, Guan Y, Luby JJ, Rosyara UR, Howard NP, Bassil N, Bink MCAM (2019) Two large-effect QTLs , Ma and Ma3 , determine genetic potential for acidity in apple fruit: breeding insights from a multi-family study. Tree Genet Genomes 15:18. https://doi.org/10.1007/s11295-019-1324-y

    Article  Google Scholar 

  • Voorrips RE, Bink MCAM, Van De Weg WE (2012) Pedimap: Software for the visualization of genetic and phenotypic data in pedigrees. J Hered 103:903–907. https://doi.org/10.1093/jhered/ess060

    Article  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE, Bink MCAM, Kruisselbrink JW, Koehorst-van Putten HJJ, van de Weg WE (2016) PediHaplotyper: software for consistent assignment of marker haplotypes in pedigrees. Mol Breed 36:1–10. https://doi.org/10.1007/s11032-016-0539-y

    Article  CAS  Google Scholar 

  • Wysoker A, Fennell T, Marth G, Abecasis G, Ruan J, Li H, Durbin R, Homer N, Handsaker B (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Wang A, Brown S (2012) Genetic characterization of the Ma locus with pH and titratable acidity in apple. Mol Breed 30:899–912. https://doi.org/10.1007/s11032-011-9674-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the technical staff at Better3fruit N.V. for the maintenance of the orchard, as well as Tine Verhoeven for the laboratory analyses of the PGL locus and Kim Martens at Genetwister Technologies B.V. for helping with the communication between the authors. The authors also acknowledge the financial support of Flanders Innovation & Entrepreneurship (Agentschap Innoveren en Ondernemen) (Belgium) (project number HBC.2016.0210 KUL/Better3fruit/VLAIO).

Data Archiving Statement

The SNPs and genetic map are being submitted to Genome Database for Rosaceae (www.rosaceae.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijn Rymenants.

Additional information

Communicated by D. Chagné

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 4841 kb)

ESM 2

(XLSX 4252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rymenants, M., van de Weg, E., Auwerkerken, A. et al. Detection of QTL for apple fruit acidity and sweetness using sensorial evaluation in multiple pedigreed full-sib families. Tree Genetics & Genomes 16, 71 (2020). https://doi.org/10.1007/s11295-020-01466-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-020-01466-8

Keywords

Navigation