Skip to main content
Log in

Multivariate holomorphic Hermite polynomials

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We introduce holomorphic Hermite polynomials in n complex variables that generalize the Hermite polynomials in n real variables introduced by Hermite in the late 19th century. We discuss cases in which these polynomials are orthogonal and construct a reproducing kernel Hilbert space related to one such orthogonal family. We also introduce a multivariate analog of the Itô polynomials. We show how these multivariate polynomials generalize the univariate complex Hermite and Itô polynomials. Generating functions, orthogonality relations, Rodrigues formulas, recurrence and linearization relations, and operator formulas are also derived for these multivariate holomorphic Hermite and Itô polynomials. A Kibble–Slepian formula and a Mehler-type formula for the multivariate Itô polynomials are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: Coherent States, Wavelets and Their Generalizations, 2nd edn. Springer, New York (2014)

    Book  Google Scholar 

  2. Ali, S.T., Górska, K., Horzela, A., Szafraniec, F.H.: Squeezed states and Hermite polynomials in a complex variable. J. Math. Phys. 55(1), 012107 (2014)

    Article  MathSciNet  Google Scholar 

  3. Appell, P., Kampé de Fériet, J.: Fonctions Hypergéométrique et Hypersphérique, Polynomes d’Hermite. Gauthier-Villars, Paris (1926)

  4. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  5. Cotfas, N., Gazeau, J.-P., Górska, K.: Complex and real Hermite polynomials and related quantizations. J. Phys. A 43(30), 305304 (2010)

    Article  MathSciNet  Google Scholar 

  6. Dunkl, C., Xu, Y.: Orthogonal Polynomials of Several Variables, vol. 155, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  7. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Higher Transcendental Functions, vol. 2. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  8. Foata, D.: A combinatorial proof of the Mehler formula. J. Comb. Theory Ser. A 24(3), 367–376 (1978)

    Article  MathSciNet  Google Scholar 

  9. Foata, D.: Some Hermite polynomial identities and their combinatorics. Adv. Appl. Math. 2, 250–259 (1981)

    Article  MathSciNet  Google Scholar 

  10. Foata, D., Garsia, A.: A combinatorial approach to the Mehler formulas for Hermite polynomials. Relations between combinatorics and other parts of mathematics. In: Proceedings of the Symposium on Pure Mathematics, Ohio State Univ., Columbus, OH (1978), Proceedings of the Symposium on Pure Mathematics, XXXIV, American Mathematical Society, Providence, RI, pp. 163–179 (1979)

  11. Gazeau, J.-P.: Coherent States in Quantum Physics. Wiley, Weinheim (2009)

    Book  Google Scholar 

  12. Gazeau, J.-P., Szafraniec, F.H.: Holomorphic Hermite polynomials and a non-commutative plane. J. Phys. A 44(49), 495201 (2011)

    Article  MathSciNet  Google Scholar 

  13. Górska, K., Horzela, A., Szafraniec, F.H.: Holomorphic Hermite polynomials in two variables. J. Math. Anal. Appl. 470(2), 750–769 (2019)

    Article  MathSciNet  Google Scholar 

  14. Hermite, C.: C. R. Acad. Sci. Paris 58(93–100), 266–273 (1864)

    Google Scholar 

  15. Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable, vol. 98. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  16. Ismail, M.E.H.: Analytic properties of complex Hermite polynomials. Trans. Am. Math. Soc. 368(2), 1189–1210 (2016)

    Article  MathSciNet  Google Scholar 

  17. Ismail, M.E.H., Simeonov, P.: Complex Hermite polynomials: their combinatorics and integral operators. Proc. Am. Math. Soc. 143(4), 1397–1410 (2015)

    Article  MathSciNet  Google Scholar 

  18. Ismail, M.E.H., Simeonov, P.: Combinatorial and analytic properties of the \(n\)-dimensional Hermite polynomials. J. Math. Anal. Appl. 449, 368–381 (2017)

    Article  MathSciNet  Google Scholar 

  19. Ismail, M.E.H., Zeng, J.: Combinatorics of the 2D-Hermite and 2D-Laguerre polynomials. Adv. Appl. Math. 64, 70–88 (2015)

    Article  Google Scholar 

  20. Ismail, M.E.H., Zhang, R.: Classes of bivariate orthogonal polynomials. SIGMA 12 paper no. 021, 37 pp. (2016)

  21. Ismail, M.E.H., Zhang, R.: Kibble–Slepian formula and generating functions for \(2D\) polynomials. Adv. Appl. Math. 80, 70–92 (2016)

    Article  MathSciNet  Google Scholar 

  22. Itô, K.: Complex multiple Wiener integral. Jpn. J. Math. 22, 63–86 (1952)

    Article  MathSciNet  Google Scholar 

  23. Kibble, W.F.: An extension of theorem of Mehler on Hermite polynomials. Proc. Camb. Philos. Soc. 41, 12–15 (1945)

    Article  MathSciNet  Google Scholar 

  24. Kroó, A.: On weighted polynomial approximation on the plane. East J. Approx. 1(1), 73–81 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Louck, J.D.: Extension of the Kibble–Slepian formula for Hermite polynomials using Boson operator methods. Adv. Appl. Math. 2, 239–249 (1981)

    Article  MathSciNet  Google Scholar 

  26. Saff, E.B., Snider, A.D.: Fundamentals of Complex Analysis with Applications to Engineering and Science, 3rd edn. Prentice Hall, Upper Saddle River (2003)

    MATH  Google Scholar 

  27. Slepian, D.: On the symmetrized Kronecker power of a matrix and extensions of Mehler’s formula for Hermite polynomials. SIAM J. Math. Anal. 3, 606–616 (1972)

    Article  MathSciNet  Google Scholar 

  28. Thirulogasanthar, K., Honnouvo, G., Krzyźak, A.: Coherent states and Hermite polynomials on quaternionic Hilbert spaces. J. Phys. A 43(38), 385205 (2010)

    Article  MathSciNet  Google Scholar 

  29. van Eijndhoven, S.J.L., Meyers, J.L.H.: New orthogonality relations for the Hermite polynomials and related Hilbert spaces. J. Math. Anal. Appl. 146(1), 89–98 (1990)

    Article  MathSciNet  Google Scholar 

  30. Wünsche, A.: Laguerre \(2D\)-functions and their applications in quantum optics. J. Phys. A 31(40), 8267–8287 (1998)

    Article  MathSciNet  Google Scholar 

  31. Wünsche, A.: Transformations of Laguerre \(2D\)-polynomials with applications to quasiprobabilities. J. Phys. A 32(17), 3179–3199 (1999)

    Article  MathSciNet  Google Scholar 

  32. Xu, Y.: Complex versus real orthogonal polynomials of two variables. Integr. Transforms Spec. Funct. 26(2), 134–151 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plamen Simeonov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, M.E.H., Simeonov, P. Multivariate holomorphic Hermite polynomials. Ramanujan J 53, 357–387 (2020). https://doi.org/10.1007/s11139-020-00312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-020-00312-8

Keywords

Mathematics Subject Classification

Navigation