Skip to main content
Log in

Viscoelastic Wave Simulation with High Temporal Accuracy Using Frequency-Dependent Complex Velocity

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

In recent decades, the study of seismic attenuation has received more and more concerns because it can stimulate the development of wave propagation simulation and improve the accuracy of structure imaging and reservoir prediction. In this paper, we review the attenuation theory and the development of high temporal accuracy wave simulation. The conventional mathematical models to describe the characteristics of viscoelastic are based on constant-Q model or standard linear solids theory. However, these approaches possess some noticeable shortcomings. Therefore, we introduce a frequency-dependent complex velocity to derive the novel viscoelastic wave equations with decoupled amplitude dissipation and phase dispersion. To obtain high temporal accuracy viscoelastic wave simulation, we adopt the normalized pseudo-Laplacian to compensate for the temporal dispersion errors caused by the second-order finite-difference discretization in the time domain. During the implementation, we incorporate the normalized pseudo-Laplacian into the optimized staggered-grid finite-difference coefficients. Therefore, it can greatly reduce the times of low-rank decomposition and Fourier transform and largely improve the computational efficiency. Based on this strategy, we can implement the high temporal accuracy viscoelastic wavefield extrapolation by comprehensively exploiting the staggered-grid finite-difference scheme, pseudo-spectral method and low-rank decomposition algorithm. Meanwhile, a linear velocity model is employed to evaluate the accuracy of low-rank approximation. Furthermore, we use several numerical examples to carry out the comparison between our scheme and other conventional methods. The numerical results reveal that our proposed scheme can effectively compensate for temporal dispersion errors and help generate high temporal accuracy viscoelastic wave solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aki K, Richards PG (2002) Quantitative seismology. University Science Books, Herndon

    Google Scholar 

  • Bai T, Tsvankin I (2016) Time-domain finite-difference modeling for attenuative anisotropic media. Geophysics 81(2):C69–C77

    Google Scholar 

  • Bai J, Yingst D, Bloor R, Leveille J (2014) Viscoacoustic waveform inversion of velocity structures in the time domain. Geophysics 79(3):R103–R119

    Google Scholar 

  • Billette FJ, Brandsberg-Dahl S (2005) The 2004 BP velocity benchmark. In: 67th Annual Conference and Exposition, EAGE, Extended Abstracts, B305

  • Blanch JO, Robertsson JOA, Symes WW (1995) Modeling of a constant Q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysics 60:176–184

    Google Scholar 

  • Bohlen T (2002) Parallel 3-D viscoelastic finite difference seismic modelling. Comput Geosci 28:887–899

    Google Scholar 

  • Carcione JM (2010) A generalization of the Fourier pseudospectral method. Geophysics 75(6):A53–A56

    Google Scholar 

  • Carcione JM, Kosloff D, Kosloff R (1988) Wave propagation simulation in a linear viscoacoustic medium. Geophys J Int 93:393–401

    Google Scholar 

  • Carcione JM, Cavallini F, Mainardi F, Hanyga A (2002) Time-domain modeling of constant-Q seismic waves using fractional derivatives. Pure Appl Geophys 159:1719–1736

    Google Scholar 

  • Chen J (2011) A stability formula for Lax-Wendroff methods with fourth-order in time and general-order in space for the scalar wave equation. Geophysics 76(2):T37–T42

    Google Scholar 

  • Chen H, Zhou H, Qu S (2014) Lowrank approximation for time domain viscoacoustic wave equation with spatially varying order fractional Laplacians. In: 84th Annual international meeting, SEG, expanded abstracts, pp 3400–3405

  • Chen H, Zhou H, Li Q, Wang Y (2016) Two efficient modeling schemes for fractional Laplacian viscoacoustic wave equation. Geophysics 81(5):T233–T249

    Google Scholar 

  • Chen H, Zhou H, Jiang S, Rao Y (2019a) Fractional Laplacian viscoacoustic wave equation low-rank temporal extrapolation. IEEE Access 7:93187–93197

    Google Scholar 

  • Chen Y, Guo B, Schuster GT (2019b) Migration of viscoacoustic data using acoustic reverse time migration with hybrid deblurring filters. Geophysics 84(3):S127–S136

    Google Scholar 

  • Chu C, Stoffa P (2011) Application of normalized pseudo-Laplacian to elastic wave modeling on staggered grids. Geophysics 76(5):T113–T121

    Google Scholar 

  • Crawley S, Brandsberg-Dahl S, McClean J (2010) 3D TTI RTM using the pseudo-analytic method. In: 80th Annual international meeting, SEG, expanded abstracts, pp 3216–3220

  • Dablain MA (1986) The application of high-order differencing to the scalar wave equation. Geophysics 51(1):54–66

    Google Scholar 

  • Deng F, McMechan GA (2008) Viscoelastic true-amplitude prestack reverse-time depth migration. Geophysics 73(4):S143–S155

    Google Scholar 

  • Dutta G, Schuster GT (2014) Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation. Geophysics 79(6):S251–S262

    Google Scholar 

  • Etgen JT, Brandsberg-Dahl S (2009) The pseudo-analytical method: application of pseudo-Laplacian to acoustic and acoustic anisotropic wave propagation. In: 79th Annual international meeting, SEG, expanded abstracts, pp 2552–2556

  • Fomel S, Ying L, Song X (2010) Seismic wave extrapolation using low rank approximation. In: 80th Annual international meeting, SEG, expanded abstracts, pp 3092–3096

  • Fomel S, Ying L, Song X (2013) Seismic wave extrapolation using lowrank symbol approximation. Geophys Prospect 61(3):526–536

    Google Scholar 

  • Guo P, McMechan GA (2018) Compensating Q effects in viscoelastic media by adjoint-based least-squares reverse time migration. Geophysics 83(2):S151–S172

    Google Scholar 

  • Guo P, McMechan GA, Guan H (2016) Comparison of two viscoacoustic propagators for Q-compensated reverse time migration. Geophysics 81(5):S281–S297

    Google Scholar 

  • Holberg O (1987) Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena. Geophys Prospect 35:629–655

    Google Scholar 

  • Kindelan M, Kamel A, Sguazzero P (1990) On the construction and efficiency of staggered numerical differentiators for the wave equation. Geophysics 55(1):107–110

    Google Scholar 

  • Kjartansson E (1979) Constant Q-wave propagation and attenuation. J Geophys Res 84(B9):4737–4748

    Google Scholar 

  • Lax P, Wendroff B (1960) Systems of conservation laws. Commun Pure Appl Math 13(2):217–237

    Google Scholar 

  • Li Q, Zhou H, Zhang Q, Chen H, Sheng S (2016) Efficient reverse time migration based on fractional Laplacian viscoacoustic wave equation. Geophys J Int 204(1):488–504

    Google Scholar 

  • Liao Q, McMechan GA (1996) Multifrequency viscoacoustic modeling and inversion. Geophysics 61(5):1371–1378

    Google Scholar 

  • Liu Y (2014) Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modeling. Geophys J Int 197(2):1033–1047

    Google Scholar 

  • Liu Y, Sen MK (2009) A new time-space domain high-order finite-difference method for the acoustic wave equation. J Comput Phys 228(23):8779–8806

    Google Scholar 

  • Liu Y, Sen MK (2013) Time-space domain dispersion-relation-based finite-difference method with arbitrary even-order accuracy for the 2D acoustic wave equation. J Comput Phys 232(1):327–345

    Google Scholar 

  • Mittet R (2007) A simple design procedure for depth extrapolation operators that compensate for absorption and dispersion. Geophysics 72(2):S105–S112

    Google Scholar 

  • Ren Z, Li Z (2017) Temporal high-order staggered-grid finite-difference schemes for elastic wave propagation. Geophysics 82(5):T207–T224

    Google Scholar 

  • Ren Z, Liu Y (2015) Acoustic and elastic modeling by optimal time-space-domain staggered-grid finite-difference schemes. Geophysics 80(1):T17–T40

    Google Scholar 

  • Robertsson JOA, Blanch JO, Symes WW (1994) Viscoelastic finite-difference modeling. Geophysics 59:1444–1456

    Google Scholar 

  • Shekar B, Tsvankin I (2011) Estimation of shear-wave interval attenuation from mode-converted data. Geophysics 76(6):D11–D19

    Google Scholar 

  • Silva NV, Yao G, Warner M (2019) Wave modeling in viscoacoustic media with transverse isotropy. Geophysics 84(1):C41–C56

    Google Scholar 

  • Song X, Alkhalifah T (2013) Modeling of pseudoacoustic P-waves in orthorhombic media with a low-rank approximation. Geophysics 78(4):C33–C40

    Google Scholar 

  • Sun J, Zhu T (2018) Strategies for stable attenuation compensation in reverse-time migration. Geophys Prospect 66(3):498–511

    Google Scholar 

  • Sun J, Zhu T, Fomel S (2015) Viscoacoustic modeling and imaging using low-rank approximation. Geophysics 80(5):A103–A108

    Google Scholar 

  • Sun J, Fomel S, Zhu T, Hu J (2016) Q-compensated least-squares reverse time migration using low-rank one-step wave extrapolation. Geophysics 81(4):S271–S279

    Google Scholar 

  • Thomsen L (1986) Weak elastic anisotropy. Geophysics 51:1954–1966

    Google Scholar 

  • Tsvankin I (2012) Seismic signature and analysis of reflection data in anisotropic media, 3rd edn. Society of Exploration Geophysicists, Houston

    Google Scholar 

  • Versteeg RJ (1993) Sensitivity of prestack depth migration to the velocity model. Geophysics 58(6):873–882

    Google Scholar 

  • Wang E, Liu Y, Sen MK (2016) Effective finite-difference modeling methods with 2-D acoustic wave equation using a combination of cross and rhombus stencils. Geophys J Int 206(3):1933–1958

    Google Scholar 

  • Wang N, Zhou H, Chen H, Xia M, Wang S, Fang J, Sun P (2018) A constant fractional-order viscoelastic wave equation and its numerical simulation scheme. Geophysics 83(1):T39–T48

    Google Scholar 

  • Wang N, Zhou H, Zhu T (2019) Compensating time-stepping error in fractional Laplacians viscoacoustic wavefield modeling. In: 89th Annual international meeting, SEG, expanded abstracts, pp 3810–3814

  • Xu S, Liu Y (2018) Pseudoacoustic tilted transversely isotropic modeling with optimal k-space operator-based implicit finite-difference schemes. Geophysics 83(3):1–19

    Google Scholar 

  • Xu S, Liu Y, Ren Z, Zhou H (2019) Time-space-domain temporal high-order staggered-grid finite-difference schemes by combining orthogonality and pyramid stencils for 3D elastic-wave propagation. Geophysics 84(4):T259–T282

    Google Scholar 

  • Xue Z, Baek H, Zhang H, Zhao Y, Zhu T, Fomel S (2018) Solving fractional Laplacian viscoelastic wave equations using domain decomposition. In: 88th Annual international meeting, SEG, expanded abstracts, pp 3943–3947

  • Yan H, Liu Y (2013) Visco-acoustic prestack reverse-time migration based on the time–space domain adaptive high-order finite-difference method. Geophys Prospect 61:941–954

    Google Scholar 

  • Yan J, Liu H (2016) Modeling of pure acoustic wave in tilted transversely isotropic media using optimized pseudo-differential operators. Geophysics 81(3):T91–T106

    Google Scholar 

  • Yang J, Zhu H (2018a) A time-domain complex-valued wave equation for modelling visco-acoustic wave propagation. Geophys J Int 215(2):1064–1079

    Google Scholar 

  • Yang J, Zhu H (2018b) Viscoacoustic reverse time migration using a time-domain complex-valued wave equation. Geophysics 83(6):S505–S519

    Google Scholar 

  • Yang L, Yan H, Liu H (2015) Optimal rotated staggered-grid finite-difference schemes for elastic wave modeling in TTI media. J Appl Geophys 122:40–52

    Google Scholar 

  • Yang L, Yan H, Liu H (2017) Optimal staggered-grid finite-difference schemes based on the minimax approximation method with the Remez algorithm. Geophysics 82(1):T27–T42

    Google Scholar 

  • Zhang J, Yao Z (2013) Optimized explicit finite-difference schemes for spatial derivatives using maximum norm. J Comput Phys 250:511–526

    Google Scholar 

  • Zhang J, Wu J, Li X (2013) Compensation for absorption and dispersion in prestack migration: an effective Q approach. Geophysics 78(1):S1–S14

    Google Scholar 

  • Zhang Y, Liu Y, Xu S (2019) High temporal accuracy viscoacoustic wave modeling in vertically transverse isotropic media based on low-rank decomposition. In: 89th Annual international meeting, SEG, expanded abstracts, pp 3790–3794

  • Zhao X, Zhou H, Wang Y, Chen H, Zhou Z, Sun P, Zhang J (2018) A stable approach for Q-compensated viscoelastic reverse time migration using excitation amplitude imaging condition. Geophysics 83(5):S459–S476

    Google Scholar 

  • Zhou H, Zhang G (2011) Prefactored optimized compact finite difference schemes for second spatial derivatives. Geophysics 76(5):WB87–WB95

    Google Scholar 

  • Zhu T, Carcione JM (2014) Theory and modelling of constant-Q P- and S-waves using fractional spatial derivatives. Geophys J Int 196(3):1787–1795

    Google Scholar 

  • Zhu T, Harris JM (2014) Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics 79(3):T105–T116

    Google Scholar 

  • Zhu Y, Tsvankin I (2006) Plane-wave propagation in attenuative transversely isotropic media. Geophysics 71(2):T17–T30

    Google Scholar 

  • Zhu T, Carcione JM, Harris JM (2013) Approximating constant-Q seismic propagation in the time domain. Geophys Prospect 61(5):931–940

    Google Scholar 

  • Zhu T, Harris JM, Biondi B (2014) Q-compensated reverse-time migration. Geophysics 79(3):S77–S87

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (NSFC) under contract numbers 41874144 and 41474110 and the Research Foundation of China University of Petroleum-Beijing at Karamay under contract number RCYJ2018A-01-001. Y. Zhang is financially supported by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Phase velocity analysis in isotropic media

Substituting plane wave into viscoelastic wave equations can generate the Christoffel equation in attenuative media. This equation is widely used in phase velocity analysis. First, the displacement of a harmonic plane wave in attenuative media can be written as:

$${\tilde{\mathbf{u}}} = {\tilde{\mathbf{U}}}\exp \left[ {i\left( {\omega t - {\tilde{\mathbf{k}}\mathbf{x}}} \right)} \right],$$
(49)

where \({\tilde{\mathbf{U}}}\) denotes the polarization vector, \({\tilde{\mathbf{k}}} = {\mathbf{k}}_{R} - i{\mathbf{k}}_{I}\) is the wave vector that becomes complex in the presence of attenuation, \({\mathbf{k}}_{R}\) is the real part of wavenumber and \({\mathbf{k}}_{I}\) is the imaginary part of the wave vector. Substituting the plane wave of Eq. (49) into viscoelastic equations, we can obtain the corresponding Christoffel equation as follows:

$$\left[ {{\tilde{\mathbf{k}}}^{2} {\mathbf{G}} - \rho \omega^{2} {\mathbf{I}}} \right]{\tilde{\mathbf{U}}} = 0,$$
(50)

where \({\mathbf{G}}\) is the complex Christoffel matrix and \({\mathbf{I}}\) is the identity matrix.

1.1 SH-Wave Phase Velocity Analysis

For the wave vector of SH-wave, the Christoffel equation has the following form (\(\tilde{k} = \left| {{\tilde{\mathbf{k}}}} \right|\)):

$$\tilde{c}_{66} \tilde{k}_{1}^{2} + \tilde{c}_{55} \tilde{k}_{3}^{2} - \rho \omega^{2} = 0.$$
(51)

Substituting the complex stiffness coefficients \(\tilde{c}_{ij} { = }c_{ij}^{R} + {{i}}c_{ij}^{I}\) into Eq. (51) yields

$$\left( {c_{66}^{R} + ic_{66}^{I} } \right)\left( {k_{R} \sin \theta - ik_{I} \sin \theta } \right)^{2} + \left( {c_{55}^{R} + ic_{55}^{I} } \right)\left( {k_{R} \cos \theta - ik_{I} \cos \theta } \right)^{2} - \rho \omega^{2} = 0.$$
(52)

In weakly attenuative media, we have

$$\gamma_{P,S} = {{\arctan \left( {\frac{1}{{Q_{P,S} }}} \right)} \mathord{\left/ {\vphantom {{\arctan \left( {\frac{1}{{Q_{P,S} }}} \right)} \pi }} \right. \kern-0pt} \pi } \approx \frac{1}{{\pi Q_{P,S} }}.$$
(53)

Because of the truncated TE of \(\left| {{\omega \mathord{\left/ {\vphantom {\omega {\omega_{0} }}} \right. \kern-0pt} {\omega_{0} }}} \right|^{2\gamma } \approx 1{ + }2\gamma \ln \left| {{\omega \mathord{\left/ {\vphantom {\omega {\omega_{0} }}} \right. \kern-0pt} {\omega_{0} }}} \right|\), the complex moduli are rewritten in the forms

$$C_{\lambda } = M_{0} \left( {\left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{P} }} - \frac{{i\text{sgn} \left( \omega \right)}}{{Q_{P} \left( {\mathbf{x}} \right)}}} \right),$$
(54)
$$C_{\mu } = \mu_{0} \left( {\left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{S} }} - \frac{{i\text{sgn} \left( \omega \right)}}{{Q_{S} \left( {\mathbf{x}} \right)}}} \right).$$
(55)

After some simplifications, the imaginary part of Eq. (52) can be formulated as (assume \(\text{sgn} \left( \omega \right) = - 1\)):

$$\frac{{\mu_{0} }}{{Q_{S} }}\left( {k_{R}^{2} - k_{I}^{2} } \right) - 2\mu_{0} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{S} }} k_{R} k_{I} = 0.$$
(56)

The only physically meaningful solution of equation is given by

$$\frac{{k_{I} }}{{k_{R} }} = \sqrt {1 + Q_{S}^{2} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{4\gamma_{S} }} } - Q_{S} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{S} }} \approx \frac{1}{{2Q_{S} }}\left| {\frac{\omega }{{\omega_{0} }}} \right|^{{ - 2\gamma_{S} }} .$$
(57)

The real part of Eq. (52) then reduces to

$$\mu_{0} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{S} }} \left( {k_{R}^{2} - k_{I}^{2} } \right) + \frac{{\mu_{0} }}{{Q_{S} }}2k_{R} k_{I} - \rho \omega^{2} = 0.$$
(58)

The phase velocity of SH-waves is found as

$$V_{SH} = \frac{\omega }{{k_{R} }} = V_{S0} \sqrt {\left| {{\omega \mathord{\left/ {\vphantom {\omega {\omega_{0} }}} \right. \kern-0pt} {\omega_{0} }}} \right|^{{2\gamma_{S} }} + \frac{3}{{4Q_{S}^{2} }}\left| {{\omega \mathord{\left/ {\vphantom {\omega {\omega_{0} }}} \right. \kern-0pt} {\omega_{0} }}} \right|^{{ - 2\gamma_{S} }} } \approx V_{S0} \left| {{\omega \mathord{\left/ {\vphantom {\omega {\omega_{0} }}} \right. \kern-0pt} {\omega_{0} }}} \right|^{{\gamma_{S} }} .$$
(59)

1.2 P- and SV-Wave Phase Velocity Analysis

For P- and SV-waves, the Christoffel equation can be written as

$$\left( {\tilde{c}_{11} \tilde{k}_{1}^{2} + \tilde{c}_{55} \tilde{k}_{3}^{2} - \rho \omega^{2} } \right)\left( {\tilde{c}_{55} \tilde{k}_{1}^{2} + \tilde{c}_{33} \tilde{k}_{3}^{2} - \rho \omega^{2} } \right) - \left[ {\left( {\tilde{c}_{13} + \tilde{c}_{55} } \right)\tilde{k}_{1} \tilde{k}_{3} } \right]^{2} = 0.$$
(60)

On the basis of \(\tilde{c}_{ij} { = }c_{ij}^{R} + {{i}}c_{ij}^{I}\) and \({{c_{M,\mu }^{R} } \mathord{\left/ {\vphantom {{c_{M,\mu }^{R} } {c_{M,\mu }^{I} }}} \right. \kern-0pt} {c_{M,\mu }^{I} }}{ = }Q_{P,S} \left( {1{ + }\frac{2}{{\pi Q_{P,S} }}\ln \left| {\frac{\omega }{{\omega_{0} }}} \right|} \right) \approx Q_{P,S} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{P,S} }}\), Eq. (60) can be reformulated as

$$\begin{aligned} & \left[ {\left( {c_{11}^{I} \sin^{2} \theta + c_{55}^{I} \cos^{2} \theta } \right)\mathcal{K}_{1} - \rho \omega^{2} + {{i}}\left( {c_{11}^{I} \sin^{2} \theta + c_{55}^{I} \cos^{2} \theta } \right)\mathcal{K}_{2} } \right] \\ & \quad \times {\kern 1pt} \left[ {\left( {c_{55}^{I} \sin^{2} \theta + c_{33}^{I} \cos^{2} \theta } \right)\mathcal{K}_{1} - \rho \omega^{2} + {{i}}\left( {c_{55}^{I} \sin^{2} \theta + c_{33}^{I} \cos^{2} \theta } \right)\mathcal{K}_{2} } \right] - \left[ {\left( {c_{13}^{I} + c_{55}^{I} } \right)\sin \theta \cos \theta \left( {\mathcal{K}_{1} + {{i}}\mathcal{K}_{2} } \right)} \right]^{2} = 0, \\ \end{aligned}$$
(61)

where

$$\begin{array}{*{20}c} {\mathcal{K}_{1} { = }Q_{P,S} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{P,S} }} \left( {k_{R}^{2} - k_{I}^{2} } \right) + 2k_{R} k_{I} ,} & {\mathcal{K}_{2} { = }\left( {k_{R}^{2} - k_{I}^{2} } \right) - Q_{P,S} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{P,S} }} 2k_{R} k_{I} } \\ \end{array} .$$
(62)

The physically meaningful solution of the imaginary part of Eq. (61) is \(\mathcal{K}_{2} { = 0}\), which then yields

$$\frac{{k_{I} }}{{k_{R} }} = \sqrt {1 + Q_{P,S}^{2} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{4\gamma_{P,S} }} } - Q_{P,S} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{P,S} }} \approx \frac{1}{{2Q_{P,S} }}\left| {\frac{\omega }{{\omega_{0} }}} \right|^{{ - 2\gamma_{P,S} }} .$$
(63)

After some mathematical manipulations, the real part of Eq. (61) is simplified as follows:

$$\left( {\rho \omega^{2} - \frac{{\mu_{0} }}{{Q_{S} }}\mathcal{K}_{1} } \right)\left( {\rho \omega^{2} - \frac{{M_{0} }}{{Q_{P} }}\mathcal{K}_{1} } \right) = 0.$$
(64)

Solving Eq. (64) can obtain the phase velocities in the following form

$$V_{P,SV} \approx V_{P0,S0} \left| {{\omega \mathord{\left/ {\vphantom {\omega {\omega_{0} }}} \right. \kern-0pt} {\omega_{0} }}} \right|^{{\gamma_{P,S} }} .$$
(65)

Based on Eqs. (59) and (65), we can theoretically calculate the P- and S-wave phase velocities.

1.3 Accuracy analysis for

$$\omega \approx \left| {\mathbf{k}} \right|v_{P0,S0}$$

Inserting \(\omega \approx \left| {\mathbf{k}} \right|v_{P0,S0}\) into Eq. (65) produces

$$V_{P,SV} \approx V_{P0,S0} \left| {\frac{{\left| {\mathbf{k}} \right|v_{P0,S0} }}{{\omega_{0} }}} \right|^{{\gamma_{P,S} }} .$$
(66)

Therefore, we can use Eq. (66) to evaluate the accuracy of real phase velocity after adopting the approximation of \(\omega \approx \left| {\mathbf{k}} \right|v_{P0,S0}\). To evaluate quantitatively the accuracy of phase velocity, the relative error is defined as follows:

$${\text{REL}} = {{\left( {{\text{RX}} - {\text{RY}}} \right)} \mathord{\left/ {\vphantom {{\left( {{\text{RX}} - {\text{RY}}} \right)} {\text{RX}}}} \right. \kern-0pt} {\text{RX}}},$$
(67)

where RX is the accurate solution and RY is the approximate value.

Based on Eqs. (65) and (66), we calculate the accurate and approximate phase velocities. Figure 11 describes the phase velocity variations with reference velocities, wavenumbers and quality factors. It can be seen that even in a strongly attenuative media (\(Q = 10\)), the phase velocity relative errors are as small as 0.0041. Based on the above analysis, we can conclude that the approximation of \(\omega \approx \left| {\mathbf{k}} \right|v_{P0,S0}\) has a very small influence on phase velocity. Therefore, introducing this approximation to solve viscoelastic wave equations is reasonable.

Fig. 11
figure 11

Phase velocity variations with reference velocities, wavenumbers and quality factors. a Computed by Eq. (65), considered as an accurate solution. b The difference between the approximation, computed by Eq. (66), and the accurate value. c The relative error computed by Eq. (67)

Appendix B. Phase Velocity Analysis in Anisotropic Media

In this section, we perform SH-, SV- and P-waves phase velocity analysis in VTI attenuative media.

2.1 SH-Wave Phase Velocity Analysis

Based on the complex modulus expression in anisotropic attenuative media (Eq. 41), the real and imaginary stiffness coefficients can be written as (assume \(\text{sgn} \left( \omega \right) = - 1\))

$$c_{ij}^{R} = c_{ij} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{ij} }} ,$$
(68)
$$c_{ij}^{I} = {{c_{ij} } \mathord{\left/ {\vphantom {{c_{ij} } {Q_{ij} }}} \right. \kern-0pt} {Q_{ij} }}.$$
(69)

Substituting Eqs. (68) and (69) into Eq. (52), we can derive the following real and imaginary parts, respectively.

$$c_{66} \sin^{2} \theta \left[ {\left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{66} }} \left( {k_{R}^{2} - k_{I}^{2} } \right) + \frac{1}{{Q_{66} }}2k_{R} k_{I} } \right] + c_{55} \cos^{2} \theta \left[ {\left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{55} }} \left( {k_{R}^{2} - k_{I}^{2} } \right) + \frac{1}{{Q_{55} }}2k_{R} k_{I} } \right] - \rho \omega^{2} = 0,$$
(70)
$$c_{66} \sin^{2} \theta \left[ {\frac{1}{{Q_{66} }}\left( {k_{R}^{2} - k_{I}^{2} } \right) - \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{66} }} 2k_{R} k_{I} } \right] + c_{55} \cos^{2} \theta \left[ {\frac{1}{{Q_{55} }}\left( {k_{R}^{2} - k_{I}^{2} } \right) - \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{55} }} 2k_{R} k_{I} } \right] = 0.$$
(71)

Substituting the relationship \(c_{66} = c_{55} \left( {1 + 2\gamma } \right)\) into Eq. (71) and making some simplifications produce

$$k_{R}^{2} - k_{I}^{2} - 2Q_{55} \alpha k_{R} k_{I} = 0,$$
(72)

where

$$\alpha { = }\frac{{\left( {1{ + 2}\gamma } \right)\left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{66} }} \sin^{2} \theta { + }\left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{55} }} \cos^{2} \theta }}{{\left( {1{ + 2}\gamma } \right)\frac{{Q_{55} }}{{Q_{66} }}\sin^{2} \theta + \cos^{2} \theta }}.$$
(73)

The physically meaningful solution of Eq. (72) is

$$\frac{{k_{I} }}{{k_{R} }} = \sqrt {1 + \left( {Q_{55} \alpha } \right)^{2} } - Q_{55} \alpha .$$
(74)

Then, the real part can be simplified as

$$\left( {c_{66} \sin^{2} \theta + c_{55} \cos^{2} \theta } \right)\left( {k_{R}^{2} - k_{I}^{2} + \frac{{2k_{R} k_{I} }}{{Q_{55} \alpha }}} \right) - \rho \omega^{2} = 0.$$
(75)

The phase velocity of SH-wave can be calculated by

$$V_{\text{SH}} = \frac{\omega }{{k_{R} }} = \xi_{Q} V_{\text{SH}}^{\text{elastic}} ,$$
(76)

where

$$V_{\text{SH}}^{\text{elastic}} = \sqrt {\frac{{\left( {c_{66} \sin^{2} \theta + c_{55} \cos^{2} \theta } \right)}}{\rho }} ,$$
(77)

and

$$\xi_{Q} = \sqrt {\frac{{2\left( {\sqrt {1 + \left( {Q_{55} \alpha } \right)^{2} } - Q_{55} \alpha } \right)\left( {1 + \left( {Q_{55} \alpha } \right)^{2} } \right)}}{{Q_{55} \alpha }}} .$$
(78)

For weakly attenuative media, \(\xi_{Q} \approx 1 { + }\frac{1}{{2\left( {Q_{55} \alpha } \right)^{2} }}.\)

2.2 P- and SV-Wave Phase Velocity Analysis

In VTI attenuative media, Eq. (60) has the following form

$$\begin{aligned} & \left\{ {\left[ {\left( {c_{11}^{R} + {{i}}c_{11}^{I} } \right)\sin^{2} \theta + \left( {c_{55}^{R} + {{i}}c_{55}^{I} } \right)\cos^{2} \theta } \right]\left( {k_{R} - ik_{I} } \right)^{2} - \rho \omega^{2} } \right\} \\ & \quad \times {\kern 1pt} \left\{ {\left[ {\left( {c_{55}^{R} + ic_{55}^{I} } \right)\sin^{2} \theta + \left( {c_{33}^{R} + ic_{33}^{I} } \right)\cos^{2} \theta } \right]\left( {k_{R} - ik_{I} } \right)^{2} - \rho \omega^{2} } \right\} - \left\{ {\left[ {\left( {c_{13}^{R} + c_{55}^{R} } \right) + i\left( {c_{13}^{I} + c_{55}^{I} } \right)} \right]\sin \theta \cos \theta k_{R} k_{I} } \right\}^{2} . \\ \end{aligned}$$
(79)

Combining Eqs. (68) and (69), Eq. (79) can be simplified as follows:

$$\begin{aligned} & \left[ {\left( {c_{11}^{I} \sin^{2} \theta \mathcal{K}_{1}^{11} + c_{55}^{I} \cos^{2} \theta \mathcal{K}_{1}^{55} } \right) - \rho \omega^{2} + i\left( {c_{11}^{I} \sin^{2} \theta \mathcal{K}_{2}^{11} + c_{55}^{I} \cos^{2} \theta \mathcal{K}_{2}^{55} } \right)} \right] \\ & \quad \times {\kern 1pt} \left[ {\left( {c_{55}^{I} \sin^{2} \theta \mathcal{K}_{1}^{55} + c_{33}^{I} \cos^{2} \theta \mathcal{K}_{1}^{33} } \right) - \rho \omega^{2} + i\left( {c_{55}^{I} \sin^{2} \theta \mathcal{K}_{2}^{55} + c_{33}^{I} \cos^{2} \theta \mathcal{K}_{2}^{33} } \right)} \right] \\ & \quad - {\kern 1pt} \left[ {\left( {c_{13}^{I} \mathcal{K}_{1}^{13} + c_{55}^{I} \mathcal{K}_{1}^{55} } \right) + i\left( {c_{13}^{I} \mathcal{K}_{2}^{13} + c_{55}^{I} \mathcal{K}_{2}^{55} } \right)} \right]^{2} \sin^{2} \theta \cos^{2} \theta = 0, \\ \end{aligned}$$
(80)

where

$$\begin{array}{*{20}c} {\mathcal{K}_{1}^{ij} { = }Q_{ij} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{ij} }} \left( {k_{R}^{2} - k_{I}^{2} } \right) + 2k_{R} k_{I} ,} & {\mathcal{K}_{2}^{ij} { = }\left( {k_{R}^{2} - k_{I}^{2} } \right) - Q_{ij} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{ij} }} 2k_{R} k_{I} } \\ \end{array} .$$
(81)

To make Eq. (80) meaningful, we set \(\mathcal{K}_{2}^{ij} { = 0}\), which yields

$$\frac{{k_{I} }}{{k_{R} }} = \sqrt {1 + Q_{ij}^{2} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{4\gamma_{ij} }} } - Q_{ij} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{ij} }} \approx \frac{1}{{2Q_{ij} }}\left| {\frac{\omega }{{\omega_{0} }}} \right|^{{ - 2\gamma_{ij} }} .$$
(82)

For weak attenuation (\(k_{R} \gg k_{I}\)), thus we have

$$\mathcal{K}_{1}^{ij} \approx Q_{ij} \left| {\frac{\omega }{{\omega_{0} }}} \right|^{{2\gamma_{ij} }} k_{R}^{2} .$$
(83)

Therefore, Eq. (80) can be simplified as follows:

$$\left[ {\left( {c_{11}^{R} \sin^{2} \theta + c_{55}^{R} \cos^{2} \theta } \right)k_{R}^{2} - \rho \omega^{2} } \right]\left[ {\left( {c_{55}^{R} \sin^{2} \theta + c_{33}^{R} \cos^{2} \theta } \right)k_{R}^{2} - \rho \omega^{2} } \right] - \left[ {\left( {c_{13}^{R} + c_{55}^{R} } \right)\sin \theta \cos \theta k_{R}^{2} } \right]^{2} = 0.$$
(84)

Solving Eq. (84) can obtain the P- or SV-wave phase velocity in VTI attenuative media:

$$V_{P,SV} = \frac{\omega }{{k_{R} }} \approx \frac{1}{{\sqrt {2\rho } }}\left\{ {\frac{{\left( {c_{11}^{R} + c_{55}^{R} } \right)\sin^{2} \theta + \left( {c_{33}^{R} + c_{55}^{R} } \right)\cos^{2} \theta }}{{ \pm {\kern 1pt} \sqrt {\left[ {\left( {c_{11}^{R} - c_{55}^{R} } \right)\sin^{2} \theta - \left( {c_{33}^{R} - c_{55}^{R} } \right)\cos^{2} \theta } \right]^{2} + 4\left( {c_{13}^{R} + c_{55}^{R} } \right)^{2} \sin^{2} \theta \cos^{2} \theta } }}} \right..$$
(85)

Appendix C. Accuracy Analysis for Incorporating Normalized Pseudo-Laplacian into Optimized SGFD Coefficients

To efficiently solve the new high temporal accuracy viscoelastic wave equations, a critical technology of incorporating normalized pseudo-Laplacian into optimized SGFD coefficients has been proposed. To investigate the accuracy of this operation, we compare the difference between \(\sqrt {\hat{F}\left( {\mathbf{k}} \right)} \sum\nolimits_{m = 1}^{M} {c_{m} \sin \left[ {\left( {m - 0.5} \right)kh} \right]}\) and \(\sum\nolimits_{m = 1}^{M} {c^{\prime}_{m} \sin \left[ {\left( {m - 0.5} \right)kh} \right]}\) with a simple linear velocity model. \(c_{m}\) and \(c^{\prime}_{m}\) stand for the conventional and optimized SGFD coefficients, respectively, computed by Eqs. (28) and (29) through minimizing the square error between the left- and right-hand sides.

First, the velocity and wavenumber are formulated as:

$$\begin{array}{*{20}c} {v\left( x \right) = 1500 + 2x} & {\left( {0 \le x < N} \right),} \\ \end{array}$$
(86)
$$k\left( x \right) = \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {{{2\pi x} \mathord{\left/ {\vphantom {{2\pi x} {\left( {Nh} \right)}}} \right. \kern-0pt} {\left( {Nh} \right)}},} \\ {{{2\pi \left( {N - x} \right)} \mathord{\left/ {\vphantom {{2\pi \left( {N - x} \right)} {\left( {Nh} \right)}}} \right. \kern-0pt} {\left( {Nh} \right)}},} \\ \end{array} } & {\begin{array}{*{20}c} {0 \le x < {N \mathord{\left/ {\vphantom {N 2}} \right. \kern-0pt} 2}} \\ {{N \mathord{\left/ {\vphantom {N 2}} \right. \kern-0pt} 2} \le x < N} \\ \end{array} } \\ \end{array} } \right.,$$
(87)

where x is the grid number and N is the grid length. Figure 12 plots some results of \(\sqrt {\hat{F}\left( {\mathbf{k}} \right)} \sum\nolimits_{m = 1}^{M} {c_{m} \sin \left[ {\left( {m - 0.5} \right)kh} \right]}\), \(\sum\nolimits_{m = 1}^{M} {c^{\prime}_{m} \sin \left[ {\left( {m - 0.5} \right)kh} \right]}\) and their differences with different time steps. For a small time step, the differences between two expressions are very small. With the increase in time step, the absolute errors are also growing (Fig. 12a–d). To avoid numerical instability, the spatial interval usually should increase with the time step. Using a large spatial spacing, the approximation errors may decrease a lot (Fig. 12d–f). Overall, the maximal error is relatively small and can be accepted during the computation.

Fig. 12
figure 12

Comparisons between reference (black line) and approximation (red line) computed by \(\sqrt {\hat{F}\left( {\mathbf{k}} \right)} \sum\nolimits_{m = 1}^{M} {c_{m} \sin \left[ {\left( {m - 0.5} \right)k_{x} h} \right]}\) and \(\sum\nolimits_{m = 1}^{M} {c^{\prime}_{m} \sin \left[ {\left( {m - 0.5} \right)k_{x} h} \right]}\) with different time steps and spatial intervals. Note that \(c_{m}\) and \(c^{\prime}_{m}\) stand for the conventional and optimized SGFD coefficients, respectively, which are computed by Eqs. (28) and (29) through minimizing the square error between the left- and right-hand sides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, Y. & Xu, S. Viscoelastic Wave Simulation with High Temporal Accuracy Using Frequency-Dependent Complex Velocity. Surv Geophys 42, 97–132 (2021). https://doi.org/10.1007/s10712-020-09607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-020-09607-3

Keywords

Navigation