Skip to main content
Log in

Fundamental Insight into the Dripping Criteria of Slag and Hot Metal in a Coke Bed Using Energy Minimization Model

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The dripping zone of the blast furnace is important in determining the productivity and quality of hot metal. The permeability of the bed affects both of these factors. Static holdup of hot metal and slag resulting from interfacial phenomena adversely affect the permeability of the bed. To characterize the holdup in the packed bed, we assumed the packed bed as an ensemble of two-sphere contacts at various contact axis inclinations and for contact angles. We developed mathematical models to determine the shapes of stable films at these contacts taking into account interfacial and gravitational energies. The film at higher contact angles shows an asymmetric shape even in between vertical spheres, which is investigated in detail. We also show the reason for the difficulty for dripping of the liquids at smaller particle sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. It is found through various weighing or draining techniques that static liquid holdup is independent of gas flow and liquid flow rates. However, these experimental techniques require shutting down of the liquid and gas flow in order to measure the static and dynamic holdups of liquid. It may be possible that the static liquid holdup at the operating condition (which is of primary interest) is different than the one after shutting down of the reactor as drag forces of the fluids may play a crucial effect. These data are not reported and, hence, need rigorous experiments. Various tracer techniques have been employed to calculate the static liquid holdup in the operating condition.[42,43,44] However, most of the studies show large discrepancies in data due to various assumptions incorporated in the tracer technique studies. Therefore, until now, the static liquid holdup is extensively measured after stopping the liquid and gas flow and it is assumed to be approximately the same in the operating condition. Thus, assumptions of static liquid holdup being independent of the upward gas flow rate and liquid flow rate remain justified.

  2. This is the flooding one obtains in the absence of upward gas flow. Flooding phenomenon is strongly dependent on the pressure drop, upward gas flow rate, and void fraction in the bed. The void fraction in the bed, in turn, depends on the total liquid holdup in the bed. The total holdup increases very sharply with the gas flow rate near the flooding limit. As static holdup is independent of the gas flow rate mainly, dynamic liquid holdup increases with the increasing gas flow rate. This formulation is unable to model the dynamic liquid holdup and the effect of upward gas flow rate on it. Therefore, actual flooding phenomena cannot be calculated through this model.

References

  1. M. Sasaki, K. Ono, A. Suzuki, Y. Okuno, and K. Yoshizawa: Trans. ISIJ, 1977, vol. 17, pp. 391–400.

    Article  CAS  Google Scholar 

  2. H.L. Shulman, C.F. Ullrich, A.Z. Proulx, and J. Zimmerman: AIChE J., 1955, vol. 1, pp. 253–58.

    Article  CAS  Google Scholar 

  3. J. Yagi: ISIJ Int., 1993, vol. 33, pp. 619–39.

    Article  CAS  Google Scholar 

  4. W. Xiong, X.-G. Bi, G.-Q. Wang, and F. Yang: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 562–70.

    Article  Google Scholar 

  5. A.R. Hanstead: Master’s Dissertation, McGill University, Montreal, PQ, Canada, 2000.

  6. Z.S. Mao, T.Y. Xiong, and J. Chen: Chem. Eng. Sci., 1993, vol. 48, pp. 2697–2703.

    Article  CAS  Google Scholar 

  7. A.E. Sáez and R.G. Carbonell: J. Colloid Interface Sci., 1990, vol. 140, pp. 408–18.

    Article  Google Scholar 

  8. A.E. Sáez, M.M. Yépez, C. Cabrera, and E.M. Soria: AIChE J., 1991, vol. 37, pp. 1733–36.

    Article  Google Scholar 

  9. T. Fukutake and V. Rajakumar: Trans. ISIJ, 1982, vol. 22, pp. 355–65.

    Article  Google Scholar 

  10. W.M. Husslage, M.A. Reuter, R.H. Heerema, T. Bakker, and A.G.S. Steeghs: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 765–76.

    Article  CAS  Google Scholar 

  11. H. Kawabata, Z. Liu, F. Fujita, and T. Usui: ISIJ Int., 2005, vol. 45, pp. 1466–73.

    Article  CAS  Google Scholar 

  12. V. Sahajwalla, R. Khanna, and A.S. Mehta: Metall. Mater. Trans. B, 2007, vol. 35B, pp. 75–83.

    Google Scholar 

  13. E. Kapilashrami, V. Sahajwalla, and S. Seetharaman: ISIJ Int., 2004, vol. 44, pp. 653–59.

    Article  CAS  Google Scholar 

  14. H. Towers: Trans. J. Br. Ceram. Soc., 1954, vol. 53, pp. 180–202.

    CAS  Google Scholar 

  15. Z. Yan, X. Lv, Z. Pang, X. Lv, and C. Bai: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1322–30.

    Article  Google Scholar 

  16. H.L. Shulman, C.F. Ullrich, and N. Wells: AIChE J., 1955, vol. 1, pp. 247–53.

    Article  CAS  Google Scholar 

  17. G.C. Gardner: Chem. Eng. Sci., 1956, vol. 5, pp. 101–13.

    Article  CAS  Google Scholar 

  18. N. Standish: Chem. Eng. Sci., 1968, vol. 23, pp. 945–47.

    Article  CAS  Google Scholar 

  19. G.J. Kramer: Chem. Eng. Sci., 1998, vol. 53, pp. 2985–92.

    Article  CAS  Google Scholar 

  20. D. Megias-Alguacil and L.J. Gauckler: AIChE J., 2009, vol. 55, pp. 1103–09.

    Article  CAS  Google Scholar 

  21. D.N. Mazzone, G.I. Tardos, and R. Pfeffer: J. Coll. Interface Sci., 1986, vol. 113, pp. 544–56.

    Article  Google Scholar 

  22. S. Ghosh, N.N. Viswanathan, and N.B. Ballal: Chem. Eng. Sci., 2020, vol. 212, pp. 115332–40.

    Article  CAS  Google Scholar 

  23. P.J. Mackey and N.A. Warner: Metall. Trans. B, 1972, vol. 3, pp. 1807–16.

    Article  CAS  Google Scholar 

  24. P.J. Mackey and N.A. Warner: Chem. Eng. Sci., 1973, vol. 28, pp. 2141–54.

    Article  CAS  Google Scholar 

  25. G.S. Gupta, J.D. Litster, E.T. White, and V.R. Rudolph: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 597–604.

    Article  CAS  Google Scholar 

  26. D. Jang, M. Shin, J.S. Oh, H.-S. Kim, S.H. Yi, and J. Lee: ISIJ Int., 2014, vol. 54, pp. 1251–55.

    Article  CAS  Google Scholar 

  27. H.L. George, R.J. Longbottom, S.J. Chew, D.J. Pinson, and B.J. Monaghan: ISIJ Int., 2014, vol. 54, pp. 1790–96.

    Article  CAS  Google Scholar 

  28. H.L. George, R.J. Longbottom, S.J. Chew, and B.J. Monaghan: ISIJ Int., 2014, vol. 54, pp. 820–26.

    Article  CAS  Google Scholar 

  29. L.H. George, B.J. Monaghan, R. Longbottom, and P.R. Austin: ISIJ Int., 2011, vol. 53, pp. 1172–79.

    Article  Google Scholar 

  30. D.D. Geleta, I.H. Siddiqui, and J. Lee: Metall. Mater. Trans. B, 2020, vol. 51, pp. 102–13.

    Article  CAS  Google Scholar 

  31. S.D. Iliev: Comput. Methods Appl. Mech. Eng., 1995, vol. 126, pp. 251–65.

    Article  Google Scholar 

  32. T. Young: Philos. Trans. R. Soc. London, 1805, vol. 95, pp. 65–87.

    Article  Google Scholar 

  33. C. Geuzaine and J.-F. Remacle: Int. J. Numer. Meth. Eng., 2009, vol. 79, pp. 1309–31.

    Article  Google Scholar 

  34. GNU Team: GNU Scientific Library, 2008.

  35. C. Dobrzynski and P. Frey: in Proceedings of the 17th International Meshing Roundtable, Springer, Berlin, Heidelberg, 2008, pp. 177–94.

  36. E. Akhilandeshwari, S. Ghosh, N.N. Viswanathan, and N.B. Ballal: in Advances in Process Metallurgy, Bangalore, India, 2019, pp. 276–80.

  37. E. Kapilashrami, A. Jakobsson, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 193–99.

    Article  CAS  Google Scholar 

  38. G.A. Turner and G.F. Hewitt: Trans. Inst. Chem. Eng., 1959, vol. 37, pp. 329–24.

    Google Scholar 

  39. W. Du, N. Quan, P. Lu, J. Xu, and W. Wei: Chem. Eng. Res. Des., 2015, vol. 106, pp. 115–25.

    Article  Google Scholar 

  40. G. Mason and W. Clark: Nature, 1965, vol. 207, p. 512.

    Article  Google Scholar 

  41. S.J. Chew, G.X. Wang, A.B. Yu, and P. Zulli: Ironmak. Steelmak., 1997, vol. 24 (5), pp. 392–400.

    CAS  Google Scholar 

  42. J.G. Schwartz, E. Weger, and M.P. Duduković: AIChE J., 1976, vol. 22, pp. 894–904.

    Article  CAS  Google Scholar 

  43. V.S. Patwardhan and V.R. Shrotri: Chem. Eng. Commun., 1981, vol. 10, pp. 349–55.

    Article  CAS  Google Scholar 

  44. C.N. Schubert, J.R. Lindner, and R.M. Kelly: AIChE J., 1986, vol. 32, pp. 1920–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Ms. Akhilandeswari, formerly graduate student, MEMS, IIT Bombay, and Ms. Manoja Namadi, presently at MTech, MEMS, IIT Bombay, for helping to carry out the required experiments. The authors also acknowledge the funding from DST for the cluster Dendrite and SpaceTime supercomputing facility, IIT Bombay, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snigdha Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 30, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Ballal, N.B. & Viswanathan, N.N. Fundamental Insight into the Dripping Criteria of Slag and Hot Metal in a Coke Bed Using Energy Minimization Model. Metall Mater Trans B 51, 2829–2842 (2020). https://doi.org/10.1007/s11663-020-01943-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01943-4

Navigation