Skip to main content
Log in

Study on the Partitioning of Alloying Elements Between bcc-Fe Matrix and bcc-Cu Precipitates and the Corresponding Effects on the Precipitation Interface

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

During aging of Fe-Cu-based ferritic steels when the nano-sized Cu-rich particles precipitate, the partitioning trends of the alloying elements in the bcc Fe/bcc Cu system and the corresponding effects on the interface are of crucial importance for understanding the evolution of the composition, morphology and transformation of Cu-rich particles. The formation energies and partitioning energies of the alloying elements, i.e., Al, Si, Ti, V, Cr, Mn, Co, Ni, Nb and Mo, in the system of bcc Fe matrix/bcc Cu precipitates and the effects of the alloying elements on the interfacial energy and bonding strength were systematically investigated based on the first-principles calculations. The results reveal that all the alloying elements prefer to partition to the bcc Fe matrix, although the formation energies of Al, Si, Ti and Ni are negative in the bcc Cu phase. Among the investigated alloying elements, Al, Si, Ti, Mn, Ni and Nb exhibit preferences to segregate to the bcc Fe/bcc Cu interface, while the effects of these six alloying elements on the interfacial energy and Griffith work of the interface are different. The segregation of Al increases the interfacial energy while those of Si, Ti, Mn, Ni and Nb exhibit the opposite effect. Furthermore, Al, Ti, Mn, Ni and Nb at their favorable segregation sites increase the Griffith work of the interface while Si plays an opposite role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. 1.Q.D. Liu and S.J. Zhao: Metall. Mater. Trans. A, 2013, vol. 44, pp. 163-71.

    CAS  Google Scholar 

  2. 2.M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M.E. Fine and Y.W. Chung: Acta Mater., 2014, vol. 73, pp. 56-74.

    CAS  Google Scholar 

  3. 3.M.D. Mulholland and D.N. Seidman: Acta Mater., 2011, vol. 59, pp. 1881-97.

    CAS  Google Scholar 

  4. 4.S.K. Ghosh, A. Haldar and P.P. Chattopadhyay: Mater. Sci. Eng. A, 2009, vol. 519, pp. 88-93.

    Google Scholar 

  5. 5.G.Q. Yin, C.F. Yang and Y.N. Lu: J. Mater. Sci. Technol., 2010, vol. 26, pp. 433-438.

    CAS  Google Scholar 

  6. 6.S. Kobayashi, T. Takeda, K. Nakai, J. Hamada, N. Kanno and T. Sakamoto: ISIJ Int., 2011, vol. 51, pp. 657-62.

    CAS  Google Scholar 

  7. 7.P.J. Othen, M.L. Jenkins and G.D.W. Smith: Philos. Mag. A, 1994, vol. 70, pp. 1-24.

    CAS  Google Scholar 

  8. 8.Y.U. Heo, Y.K. Kim, J.S. Kim and J.K. Kim: Acta Mater., 2013, vol. 61, pp. 519-28.

    CAS  Google Scholar 

  9. 9.M.S. Gagliano and M.E. Fine: Metall. Mater. Trans. A., 2004, vol. 35, pp. 2323-29.

    Google Scholar 

  10. 10.Y.R. Wen, A. Hirata, Z.W. Zhang, T. Fujita, C.T. Liu, J.H. Jiang and M.W. Chen: Acta Mater., 2013, vol. 61, pp. 2133-47.

    CAS  Google Scholar 

  11. 11.Y.R. Wen, Y.P. Li, A. Hirata, Y. Zhang, T. Fujita, T. Furuhara, C.T. Liu, A. Chiba and M.W. Chen: Acta Mater., 2013, vol. 61, pp. 7726-40.

    CAS  Google Scholar 

  12. 12.G. Han, Z.J. Xie, L. Xiong, C.J. Shang and R.D.K. Misra: Mater. Sci. Eng. A, 2017, vol. 705, pp. 89-97.

    CAS  Google Scholar 

  13. 13.A.S. Murthy, J.E. Medvedeva, D. Isheim, S.L. Lekakh, V.L. Richardsa and D.C. Van Akena: Scr. Mater., 2012, vol. 66, pp. 943-46.

    CAS  Google Scholar 

  14. 14.O.I. Gorbatov, Y.N. Gornostyrev, P.A. Korzhavyi and A.V. Ruban: Scr. Mater., 2015, vol. 102, pp. 11-14.

    CAS  Google Scholar 

  15. 15.M. Hättestrand, J.O. Nilsson, K. Stiller, P. Liu and M. Andersson: Acta Mater., 2004, vol. 52, pp. 1023-37.

    Google Scholar 

  16. 16.D. Isheim, M.S. Gaglian,M.E. Fine and D.N. Seidman: Acta Mater., 2006, vol. 54, pp. 8411-49.

    Google Scholar 

  17. 17.D. Isheim, R.P. Kolli, M.E. Fine and D.N. Seidman: Scr. Mater., 2006, vol. 55, pp. 35-40.

    CAS  Google Scholar 

  18. 18.R.P. Kolli, Z. Mao, D.N. Seidman and D.T. Keane: Appl. Phys. Lett., 2007, vol. 91, pp. 241903.

    Google Scholar 

  19. 19.Q. Shen, X. Xiong, T. Li, H. Chen, Y. Cheng and W. Liu: Mater. Sci. Eng. A, 2018, vol. 723, pp. 279-86.

    CAS  Google Scholar 

  20. 20.R.P. Kolli and D.N. Seidman: Acta Mater., 2008, vol. 56, pp. 2073-88.

    CAS  Google Scholar 

  21. 21.R.P. Kolli and D.N. Seidman: Microsc. Microanal., 2007, vol. 13, pp. 272-84.

    CAS  Google Scholar 

  22. 22.Q. Liu and S. Zhao: MRS Commun., 2012, vol. 2, pp. 127-32.

    CAS  Google Scholar 

  23. 23.Y.P. Xie and S.J. Zhao: Comput. Mater. Sci., 2012, vol. 63, pp. 329-35.

    CAS  Google Scholar 

  24. 24.Y.P. Xie and S.J. Zhao: J. Nucl. Mater., 2014, vol. 445, pp. 43-49.

    CAS  Google Scholar 

  25. 25.C.Y. Chi, H.Y. Yu, J.X. Dong, W.Q. Liu, S.C. Cheng, Z.D. Liu and X.S. Xie: Prog. Nat. Sci.: Mater. Int., 2012, vol. 22, pp. 175-85.

    Google Scholar 

  26. 26.E. Clouet, L. Laé, T. Épicier, W. Lefebvre, M. Nastar and A. Deschamps: Nat. Mater., 2006, vol. 5, pp. 482-88.

    CAS  Google Scholar 

  27. 27.V.V. Serikov, N.M. Kleinerman, A.V. Vershinin, N.V. Mushnikov, A.V. Protasov, L.A. Stashkova, O.I. Gorbatov, A.V. Ruban and Y.N. Gornostyrev: J. Alloys Comp., 2014, vol. 614, pp. 297-304.

    CAS  Google Scholar 

  28. 28.G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758.

    CAS  Google Scholar 

  29. 29.P.E. Blöchl: Phys. Rev. B, 1994, vol. 50, pp. 17953.

    Google Scholar 

  30. 30.Y. Wang and J.P. Perdew: Phys. Rev. B, 1991, vol. 44, pp. 13298.

    CAS  Google Scholar 

  31. 31.X. Zhang, T. Hickel, J. Rogal, S. Fähler, R. Drautz and J. Neugebauer: Acta Mater., 2015, vol. 99, pp. 281-89.

    CAS  Google Scholar 

  32. 32.N.I. Medvedeva, A.S. Murthy, V.L. Richards, D.C. Van Aken and J.E. Medvedeva: J. Mater. Sci., 2013, vol. 48, pp. 1377-86.

    CAS  Google Scholar 

  33. 33.X.F. Gong, G.X. Yang, Y.H. Fu, Y.Q. Xie, J. Zhuang and X.J. Ning: Comput. Mater. Sci., 2009, vol. 47, pp. 320-25.

    CAS  Google Scholar 

  34. 34.S.J. Lee, Y.K. Lee and A. Soon: Appl. Surf. Sci., 2012, vol. 258, pp. 9977-81.

    CAS  Google Scholar 

  35. 35.S. Lu, Q.M. Hu, M.P.J. Punkkinen, B. Johansson and L. Vitos: Phys. Rev. B 2013, vol. 87, pp. 224104.

    Google Scholar 

  36. 36.X. Wang, Y. Jia, Q. Yao, F. Wang, J. Ma and X. Hu: Surf. Sci.. 2004, vol. 551, pp. 179-88.

    CAS  Google Scholar 

  37. 37.D. Scheiber, V.I. Razumovskiy, P. Puschnig, R. Pippan and L.Romner: Acta Mater., 2015, vol. 88, pp. 180-89.

    CAS  Google Scholar 

  38. 38.Y.Z. Ji, A. Issa, T.W. Heo, J.E. Saal, C. Wolverton and L.Q. Chen: Acta Mater., 2014, vol. 76, pp. 259-71.

    CAS  Google Scholar 

  39. 39.Y. Wang, Z.K. Liu, L.Q. Chen and C. Wolverton: Acta Mater., 2007, vol. 55, pp. 5934-547.

    CAS  Google Scholar 

  40. 40.A. Issa, J. E. Saal and C.Wolverton; Acta Mater., 2015, vol. 83, pp. 75-83.

    CAS  Google Scholar 

  41. 41.J.R. Rice and J.S. Wang: Mater. Sci. Eng. A, 1989, vol. 107, pp. 23-40.

    Google Scholar 

  42. 42.P. Olsson, T.P.C. Klaver and C. Domain: Phys. Rev. B, 2010, vol. 81, pp. 054102.

    Google Scholar 

  43. 43.O.I. Gorbatov, S.V. Okatov, Y.N. Gornostyrev, P.A. Korzhavyi and A.V. Ruban: Phys. Met. Metallogr., 2013, vol. 114, pp. 642-53.

    Google Scholar 

  44. 44.M.V. Petrik, O.I. Gorbatov and Y.N. Gornostyrev: Phys. Met. Metallogr., 2013, vol. 114, pp. 885-92.

    Google Scholar 

  45. 45.A. Schneider, C.C. Fu and C. Barreteau: Phys. Rev. B, 2018, vol. 98, pp. 094426.

    CAS  Google Scholar 

  46. 46.H. Zhang, M.P.J. Punkkinen, B. Johansson, S. Hertzman and L. Vitos: Phys. Rev. B, 2010, vol. 81, pp. 184105.

    Google Scholar 

  47. 47.A. Saengdeejing, Y. Chen, K. Suzuki, H. Miura and T. Mohri: Comput. Mater. Sci., 2013, vol. 70, pp. 100-106.

    CAS  Google Scholar 

  48. 48.C.K. Ande and M.H.F. Sluiter: Acta Mater., 2010, vol. 58, pp. 6276-81.

    CAS  Google Scholar 

  49. 49.B. Drittler, N. Stefanou, S. Blügel, R. Zeller and P.H. Dederichs: Phys. Rev. B, 1989, vol. 40, pp. 8203.

    CAS  Google Scholar 

  50. 50.G. Rahman, I.G. Kim, H.K.D.H. Bhadeshia and A.J. Freeman: Phys. Rev. B, 2010, vol. 81, pp. 184423.

    Google Scholar 

  51. 51.T. Koyama and H. Onodera: Mater. Trans., 2005, vol. 46, pp. 1187-92.

    CAS  Google Scholar 

  52. 52.D. Shin, A. Shyam, S. Lee, Y. Yamamoto and J.A. Haynes: Acta Mater., 2017, vol. 41, pp. 327-40.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Natural Science Foundation of China (No. 51764047), Natural Science Foundation of Inner Mongolia (No. 2019MS05013) and the Youth Science and Technology Talent Support Project of Inner Mongolia Autonomous Region Higher Education Institutions (NJYT-19-A21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 6, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Wang, H., Ma, C. et al. Study on the Partitioning of Alloying Elements Between bcc-Fe Matrix and bcc-Cu Precipitates and the Corresponding Effects on the Precipitation Interface. Metall Mater Trans A 51, 5444–5452 (2020). https://doi.org/10.1007/s11661-020-05929-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05929-4

Navigation