Skip to main content
Log in

Effect of Strain Rate on Deformation Response of Metastable High Entropy Alloys Upon Friction Stir Processing

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Effect of strain rate on the tensile behavior of two friction stir-processed dual-phase high entropy alloys was investigated. The dual-phase high entropy alloys have a high fraction of metastable f.c.c. phase. Engineering the f.c.c. phase metastability through alloy chemistry leads to different levels of transformation and impacts the retained f.c.c. phase after deformation. These metastable high entropy alloys show dominance of transformation-induced plasticity (TRIP) irrespective of strain rates, unlike the observations in TRIP steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. [1] M. Ahmed, D. Wexler, G. Casillas, D.G. Savvakin, E.V. Pereloma, Acta Materialia. 104 (2016) pp. 190-200.

    Article  CAS  Google Scholar 

  2. [2] O. Grässel, L. Krüger, G. Frommeyer, L. Meyer, Int. J. Plast. 16 (2000) pp. 1391-409.

    Article  Google Scholar 

  3. [3] O. Grassel, G. Frommeyer, C. Derder, H. Hofmann, Journal de Physique IV. 7 (1997) 383.

    Google Scholar 

  4. [4] K. Eberle, P. Cantinieaux, P. Harlet, Ironmaking Steelmaking. 26 (1999) pp. 176-81.

    Article  CAS  Google Scholar 

  5. [5] J.A. Lichtenfeld, C.J. Van Tyne, M.C. Mataya, Metall. Mater. Trans. A. 37 (2006) pp. 147-61.

    Article  CAS  Google Scholar 

  6. [6] A. Das, S. Tarafder: Int. J. Plast. 2009, vol. 25, pp. 2222-47.

    Article  CAS  Google Scholar 

  7. [7] G. Huang, D. Matlock, G. Krauss: Metall. Trans. A. 1989, vol. 20, pp. 1239-46.

    Article  Google Scholar 

  8. [8] W.Q. Song, P. Beggs, M. Easton: Mater Des. 2009, vol.30, pp. 642-48.

    Article  CAS  Google Scholar 

  9. [9] C. Wu, S. Wang, C. Chen, J. Yang, P. Chiu, J. Fang, Scr. Mater. 2007, vol 56, pp. 717-20.

    Article  CAS  Google Scholar 

  10. [10] S. Basu, Z. Li, K.G. Pradeep, D. Raabe: Frontiers in Materials Structural Materials. 2018, vol.5, pp. 1-10.

    CAS  Google Scholar 

  11. [11] De Cooman, B.C., Estrin, Y. Kim, S.K., 2018. Acta Mater, 142, pp. 283-362.

    Article  Google Scholar 

  12. [12] S. Nene, M. Frank, K. Liu, R. Mishra, B. McWilliams, and K. Cho, Sci. Rep. 2018, vol. 8, art. no. 9920.

    Article  CAS  Google Scholar 

  13. [13] K. Liu, S.S. Nene, M. Frank, S. Sinha, R.S. Mishra: Mater. Res. Let. 2018, vol.6, pp. 613-19.

    Article  CAS  Google Scholar 

  14. [14] S.F. Liu, Y. Wu, H.T. Wang, W.T. Lin, Y.Y. Shang, J.B. Liu, K. An, X.J. Liu, H. Wang, Z.P. Lu: J. Alloys. Compd., 2019, 792, pp. 444-455.

    Article  CAS  Google Scholar 

  15. [15] S. Sevsek, C. Haase, W.Bleck: Metals, 2019, 9(3), 344.

    Article  CAS  Google Scholar 

  16. [16] S. Nene, M. Frank, K. Liu, S. Sinha, R. Mishra, B. McWilliams, K. Cho: Scr. Mater. 2018, vol.154, pp.163-67.

    Article  CAS  Google Scholar 

  17. [18] S. Wei, F. He, C.C. Tasan: J. Mater. Res. 2018, vol.33, pp. 2924-37.

    Article  CAS  Google Scholar 

  18. [19] G. Olson, M. Cohen: Metall. Trans. A. 1976, vol. 7, pp. 1897-904.

    Google Scholar 

  19. [20] S. Curtze, V. Kuokkala, M. Hokka, P. Peura: Mater. Sci. Eng. A. 2009, vol. 507 pp. 124-31.

    Article  Google Scholar 

  20. [21] J. Guimaraes: Mater. Sci. Eng. A.2008, vol. 475, pp. 343-47.

    Article  Google Scholar 

  21. [22] S. Lee, Y. Estrin, B.C. De Cooman: Metall. Trans. A. 2014, vol.45, pp. 717-30.

    Article  CAS  Google Scholar 

  22. [23] X. Lin, D. Chen: J. Mater. Eng. Perform. 2008, vol. 17, pp.894.

    Article  CAS  Google Scholar 

  23. [24] M. Ashby: Philos. Mag. 1970, vol.21, pp. 399-424.

    Article  CAS  Google Scholar 

  24. [25] D. Hull, D.J. Bacon: Introduction to Dislocations, 5th ed., Butterworth-Heinemann, UK, 2001.

    Google Scholar 

  25. [26] J.P. Hirth, J. Lothe: Theory of dislocations, 2nd ed., Wiley, New York, NY, 1982.

    Google Scholar 

  26. [26] B. Choudhary, E.I. Samuel, G. Sainath, J. Christopher, M. Mathew: Metall. Trans. A. 2013, vol. 44, pp. 4979-92.

    Article  CAS  Google Scholar 

  27. [27] J.A. Lichtenfeld, C.J. Van Tyne, M.C. Mataya: Metall. Trans. A. 2006, vol.37, pp. 147-61.

    Article  Google Scholar 

  28. [28] J. Guimaraes, V. Werneck: Mater. Sci. Eng. 1978, vol.34, pp. 87-90.

    Article  CAS  Google Scholar 

Download references

The authors gratefully acknowledge the support of the National Science Foundation through Grant #1435810. The authors also thank the Center for Advanced Research and Technology for providing access to the microscopy facilities at the University of North Texas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 2, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Nene, S.S., Frank, M. et al. Effect of Strain Rate on Deformation Response of Metastable High Entropy Alloys Upon Friction Stir Processing. Metall Mater Trans A 51, 5043–5048 (2020). https://doi.org/10.1007/s11661-020-05927-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05927-6

Navigation