Skip to main content
Log in

Highly durable Li-ion battery anode from Fe3O4 nanoparticles embedded in nitrogen-doped porous carbon with improved rate capabilities

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For next generation, lithium-ion batteries (LIBs) developing high capacity anode materials are crucial with increasing demand of large-scale application. Conversion-type anode materials are promising if stable cycling behavior could be achieved. In this work, a nitrogen-doped porous carbon-Fe3O4 (NPC-Fe3O4) nanocomposite is synthesized via a simple and scalable approach. Composite is prepared by pyrolysis of polymer silica hybrid PolyHIPE (high internal phase emulsion) into NPC, and Fe3O4 nanoparticles (NPs) are anchored on its surface via hydrothermal synthesis. As-prepared NPC-Fe3O4 nanocomposite delivers high reversible capacity of around 1001 mAhg−1 at 0.1 Ag−1 current density and rate capabilities and displays excellent cycling stability as high as 95% capacity retention even after 400 cycles. Superior electrochemical performance of NPC-Fe3O4 is attributed to the hierarchical porous structure and nitrogen doping of carbon which shorten the diffusion path of Li+ and provide ample space to prevent aggregation of Fe3O4 nanoparticles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

NPC:

Nitrogen-doped porous carbon

HIPE:

High internal phase emulsion

NPs:

Nanoparticles

LiBs:

Li-ion batteries

SEI:

Solid electrolyte interface

HF:

Hydrofluoric acid

TEOS:

Tetraethyl orthosilicate

RGO:

Reduced graphene oxide

GO:

Graphene oxide

PVDF:

Polyvinylidene fluoride

NMP:

N-methyl pyrrolidone

References

  1. Marom R, Amalraj SF, LeiferN Jacob D, Auerbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938–9954

    CAS  Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652

    CAS  Google Scholar 

  3. Aricò AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366

    Google Scholar 

  4. Zhang L, Wu HB, Lou XW (2014) Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv Energy Mater 4:1300958

    Google Scholar 

  5. Ming J, Park JB, Sun YK (2013) Encapsulation of metal oxide nanocrystals into porous carbon with ultrahigh performances in lithium-ion battery. ACS Appl Mater Interfaces 5:2133–2136

    CAS  Google Scholar 

  6. Zhou S, Tao Z, Liu J, Wang X, Mei T, Wang X (2019) Bricklike Ca9Co12O28 as an active/inactive composite for lithium-ion batteries with enhanced rate performances. ACS Omega 4:6452–6458

    CAS  Google Scholar 

  7. Lee SH, Yu SH, Lee JE, Jin A, Lee DJ, Lee N, Jo H, Shin K, Ahn TY, Kim YW, Choe H, SungY E, Hyeon T (2013) Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium-ion batteries via geometric confinement. Nano Lett 13:4249–4256

    CAS  Google Scholar 

  8. Ji L, Tan Z, Kuykendall TR, Aloni S, Xun S, Battaglia V, Zhang Y (2011) Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium-ion cells. Phys Chem Chem Phys 13:7170–7177

    CAS  Google Scholar 

  9. Lim HS, Jung BY, Sun YK, Suh KD (2012) Hollow Fe3O4 microspheres as anode materials for lithium-ion batteries. Electrochim Acta 75:123–130

    CAS  Google Scholar 

  10. Zhang J, Yao Y, Huang T, Yu A (2012) Uniform hollow Fe3O4 spheres prepared by the template-free solvothermal method as anode material for lithium-ion batteries. Electrochim Acta 78:502–507

    CAS  Google Scholar 

  11. Zhang Q, Shi Z, Deng Y, Zheng J, Liu G, Chen G (2012) Hollow Fe3O4/C spheres as superior lithium storage materials. J Power Sources 197:305–309

    CAS  Google Scholar 

  12. Shi Y, Zhang J, Bruck AM, Zhang Y, Li J, Stach EA, Takeuchi KJ, Marschilok AC, Takeuchi ES, Yu GA (2017) Tunable 3D nanostructured conductive gel framework electrode for high-performance lithium-ion batteries. Adv Mater 29:1603922

    Google Scholar 

  13. Kwon YH, MinniciK Huie M M, Takeuchi KJ, Takeuchi ES, Marschilok AC, Reichmanis E (2016) Electron/ion transport enhancer in high capacity li-ion battery anodes. Chem Mater 28:6689–6697

    CAS  Google Scholar 

  14. Wang Z, Zhou L, Lou XW (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24:1903–1911

    CAS  Google Scholar 

  15. Xu X, Cao R, Jeong S, Cho J (2012) Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett 12:4988–4991

    CAS  Google Scholar 

  16. Balaya P, Li H, Kienle L, Maier J (2003) Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. AdvFunct Mater 13:621–625

    CAS  Google Scholar 

  17. Cui ZM, Jiang LY, Song WG, Guo YG (2009) High-yield gas-liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries. Chem Mater 21:1162–1166

    CAS  Google Scholar 

  18. Shen L, Song H, Cui H, Wen X, Wei X, Wang C (2013) Fe3O4-carbon nanocomposites via a simple synthesis as anode materials for rechargeable lithium-ion batteries. Cryst Eng Commun 15:9849–9854

    CAS  Google Scholar 

  19. Abraham A, Housel LM, Lininger CN, Bock DC, Jou J, Wang F, West AC, Marschilok AC, Takeuchi KJ, Takeuchi ES (2016) Investigating the complex chemistry of functional energy storage systems: the need for an integrative, multiscale (molecular to mesoscale) perspective. ACS Cent Sci 2:380–387

    CAS  Google Scholar 

  20. Wang JZ, Zhong C, Wexler D, Idris NH, Wang ZX, Chen LQ, Liu HK (2011) Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem A Eur J17:661–667

    Google Scholar 

  21. Yue W, Tao S, Fu J, Gao Z, Ren Y (2013) Carbon-coated graphene-Cr2O3 composites with enhanced electrochemical performances for Li-ion batteries. Carbon 65:97–104

    CAS  Google Scholar 

  22. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a super high capacity and rate capability. Adv Mater 24:2047–2050

    Google Scholar 

  23. Lu H, Chen R, Hu Y, Wang X, Wang Y, Ma L, Zhu G, Chen T, Tie Z, Jin Z, Liu J (2017) Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. Nanoscale 9:1972–1977

    CAS  Google Scholar 

  24. Miao X, Sun D, Zhou X, Lei Z (2019) Designed formation of nitrogen and sulfur dual-doped hierarchically porous carbon for long-life lithium and sodium ion batteries. Chem Eng J 364:208–216

    CAS  Google Scholar 

  25. Mao Y, DuanH XuB, Zhang L, Hu Y, Zhao C, Wang Z, Chen L, Yang Y (2012) Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci 5:7950–7955

    CAS  Google Scholar 

  26. Sui ZY, Wang C, Shu K, Yang QS, Ge Y, Wallace GG, Han BH (2015) Manganese dioxide-anchored three-dimensional nitrogen-doped graphene hybrid aerogels as excellent anode materials for lithium-ion batteries. J Mater Chem A3:10403–10412

    Google Scholar 

  27. Zhao L, Hu YS, Li H, Wang Z, Chen L (2011) Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv Mater 23:1385–1388

    CAS  Google Scholar 

  28. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324:768–771

    CAS  Google Scholar 

  29. Deshmukh AB, Nalawade AC, Karbhal I, Qureshi MS, Shelke MV (2018) Electrochemical capacitive energy storage in PolyHIPE derived nitrogen enriched hierarchical porous carbon nanosheets. Carbon 128:287–295

    CAS  Google Scholar 

  30. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite and graphene oxide. Carbon 49:3019–3023

    CAS  Google Scholar 

  31. Li D, Li X, Wang S, Zheng Y, Qiao L, He D (2014) Carbon-wrapped Fe3O4 nanoparticle films grown on nickel foam as binder-free anodes for high-rate and long-life lithium storage. ACS Appl Mater Interfaces 6:648–654

    CAS  Google Scholar 

  32. He C, Wu S, Zhao N, Shi C, Liu E, Li J (2013) Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium-ion battery anode material. ACS Nano 7:4459–4469

    CAS  Google Scholar 

  33. Lian P, Zhu X, Xiang H, Li Z, Yang W, Wang H (2010) Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:834–840

    CAS  Google Scholar 

  34. Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci 5:895–904

    CAS  Google Scholar 

  35. Do JS, Weng CH (2005) Preparation and characterization of CoO used as anodic material of lithium battery. J Power Sources 146:482–486

    CAS  Google Scholar 

  36. Sun Y, Du C, Feng XY, Yu Y, LieberwirthI ChenC H (2012) Electrostatic spray deposition of nanoporous CoO/Co composite thin films as anode materials for lithium-ion batteries. Appl Surf Sci 259:769–773

    CAS  Google Scholar 

  37. Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, LuGQ ChengH M (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313

    CAS  Google Scholar 

  38. Wang Z, Luan D, Madhavi S, Hu Y, Lou XW (2012) Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ Sci 5:5252–5256

    CAS  Google Scholar 

  39. Sathish M, Tomai T, Honma I (2012) Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage. J Power Sources 217:85–91

    CAS  Google Scholar 

  40. Wang J, Gao M, Wang D, Li X, Dou Y, Liu Y, Pan H (2015) Chemical vapor deposition prepared bi-morphological carbon-coated Fe3O4 composites as anode materials for lithium-ion batteries. J Power Sources 282:257–264

    CAS  Google Scholar 

  41. Xia H, Wan Y, Yuan G, Fu Y, Wang X (2013) Fe3O4/carbon core–shell nanotubes as promising anode materials for lithium-ion batteries. J Power Sources 241:486–493

    CAS  Google Scholar 

  42. Li L, Kovalchuk A, Fei H, Peng Z, Li Y, Kim D, Xiang C, Yang Y, Ruan G, Tour M (2015) Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv Energy Mater 5:1500171

    Google Scholar 

  43. Kumar R, Singh R, Alaferdov A, Moshkalev S (2018) Rapid and controllable synthesis of Fe3O4 octahedral nanocrystals embedded-reduced graphene oxide using microwave irradiation for high performance lithium-ion batteries. Electrochim Acta 281:78–87

    CAS  Google Scholar 

  44. Wu Q, Zhao R, Liu W, Zhang X, Shen X, Li W, Diao G, Chen M (2017) In-depth nanocrystallization enhanced Li-ions batteries performance with nitrogen-doped carbon coated Fe3O4 yolk–shell nanocapsules. J Power Sources 344:74–84

    CAS  Google Scholar 

  45. Liang C, Li J, Tian Q, Lin Q, Bao RY, Liu Y, Peng MB, Yang W (2019) Nitrogen-doped carbon-coated Fe3O4/rGO nanocomposite anode material for enhanced initial coulombic efficiency of lithium-ion batteries. Ionics 25:1513–1521

    CAS  Google Scholar 

  46. Zeng Z, Zhao H, Wang J, Lv P, Zhang T, Xia Q (2014) Nanostructured Fe3O4@ C as anode material for lithium-ion batteries. J Power Sources 248:15–21

    CAS  Google Scholar 

  47. Pan Y, Zeng W, Li L, Zhang Y, Dong Y, Ye K, Cheng K, Cao D, Lucht BL (2018) Surfactant assisted, one-step synthesis of Fe0O4 nanospheres and further modified Fe3O4/C with excellent lithium storage performance. J Electroanal Chem 810:248–254

    CAS  Google Scholar 

  48. Yue H, Li F, Yang Z, Tang J, Li X, He D (2014) Nitrogen-doped carbon nanofibers as anode material for high-capacity and binder-free lithium ion battery. Mater Lett 120:39–42

    CAS  Google Scholar 

  49. Shenouda AY, Liu HK (2008) Electrochemical behaviour of tin borophosphate negative electrodes for energy storage systems. J Power Sources 185:1386–1391

    CAS  Google Scholar 

  50. Bai Y, Wang X, Zhang X, Shu H, YangX HuB, Wei Q, Wu H, Song Y (2013) The kinetics of Li-ion deintercalation in the Li-rich layered Li1.12[Ni0.5Co0.2Mn0.3]0.89O2 studied by electrochemical impedance spectroscopy and galvanostatic intermittent titration technique. Electrochim Acta 109:355–364

    CAS  Google Scholar 

  51. Wang LY, Zhuo LH, Cheng H, Zhang C, Zhao F (2015) Porous carbon nanotubes decorated with nano sized cobalt ferrite as anode materials for high-performance lithium-ion batteries. J Power Sources 283:289–299

    CAS  Google Scholar 

  52. Liu T, Gorsuch A, Chesneau F, LuchtB L (2014) Surface phenomena of high energy Li(Ni1/3Co1/3Mn1/3)O2/graphite cells at high temperature and high cutoff voltages. J Power Sources 269:920–926

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to CSIR and DST Nanomission, Science and Engineering Research Board (GAP314126), Government of India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjusha V. Shelke.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2866 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, A.B., Dwivedi, P.K., Nalawade, A.C. et al. Highly durable Li-ion battery anode from Fe3O4 nanoparticles embedded in nitrogen-doped porous carbon with improved rate capabilities. J Mater Sci 55, 15667–15680 (2020). https://doi.org/10.1007/s10853-020-05143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05143-y

Navigation