Skip to main content
Log in

Discontinuous Dynamic Recrystallization Mechanism and Twinning Evolution during Hot Deformation of Incoloy 825

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Discontinuous dynamic recrystallization (DDRX), which involves multiple nucleation and grain growth processes, plays a crucial role in grain refinement; however, the underlying mechanism and the significant role of twin boundaries (TBs) remain poorly understood. Here, the evolution of characteristic microstructures and the fraction and density of TBs under different deformation conditions (i.e., 1050–1200 °C, 0.001–1 s−1) in Incoloy 825 was investigated through a thermomechanical simulator, electron backscattered diffraction (EBSD), and transmission electron microscopy (TEM). The first strand of recrystallized grains nucleated along the original grain boundaries (GBs), separated by the newly formed random high-angle grain boundaries (HAGBs), which were transformed from low-angle grain boundaries (LAGBs) and pre-existing TBs. Subsequently, straight TBs forming in the new grains increased the misorientation angle, promoting the migration of stagnated grain boundaries, and parts of newly generated twinning chains at the front of the recrystallization zone converted into random HAGBs, providing sites for the following layer of nucleation. Moreover, triple junctions between the recrystallized and deformed grains also served as potential nucleation sites when the LAGBs in the large misorientation gradient were transformed into random HAGBs. Quantitative relationships between the recrystallized grain size and TB density were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 3rd ed., Pergamon Press, Oxford, 2017

    Google Scholar 

  2. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post–Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130–207

    CAS  Google Scholar 

  3. T. Sakai and J.J. Jonas, Dynamic Recrystallization: Mechanical And Microstructural Considerations, Acta Metall., 1984, 32, p 189–209

    CAS  Google Scholar 

  4. J.J. Jonas, C.M. Sellars, and W.J. McG, Tegart, Strength and Structure Under Hot–Working Conditions, Metall Rev., 1969, 14, p 1–24

    Google Scholar 

  5. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng., A, 1997, 238, p 219–274

    Google Scholar 

  6. K. Huang and R.E. Logé, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater. Des., 2016, 111, p 548–574

    CAS  Google Scholar 

  7. K. Huang, K. Marthinsen, Q.L. Zhao, and R.E. Logé, The Double–Edge Effect of Second–Phase Particles on the Recrystallization Behaviour and Associated Mechanical Properties of Metallic Materials, Prog. Mater Sci., 2018, 92, p 284–359

    CAS  Google Scholar 

  8. Y. Zhang, N.R. Tao, and K. Lu, Effects of Stacking Fault Energy, Strain Rate and Temperature on Microstructure and Strength of Nanostructured Cu–Al Alloys Subjected to Plastic Deformation, Acta Mater., 2011, 59, p 6048–6058

    CAS  Google Scholar 

  9. F.I. Grace and M.C. Inman, Influence of Stacking Fault Energy on Dislocation Configurations in Shock–Deformed Metals, Metallography, 1970, 3(1), p 89–98

    CAS  Google Scholar 

  10. D. Ponge and G. Gottstein, Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., 1998, 46, p 69–88

    CAS  Google Scholar 

  11. D.F. Li, Q.M. Guo, S.L. Guo, H.J. Peng, and Z.G. Wu, The Microstructure Evolution and Nucleation Mechanisms of Dynamic Recrystallization in Hot–Deformed Inconel 625 Superalloy, Mater. Des., 2011, 32, p 696–705

    CAS  Google Scholar 

  12. B. Wang, S.H. Zhang, M. Cheng, and H.W. Song, Dynamic Recrystallization Mechanism of Inconel 690 Superalloy During Hot deformation at High Strain Rate, J. Mater. Eng. Perform., 2013, 22, p 2382–2388

    CAS  Google Scholar 

  13. N. Dudova, A. Belyakov, T. Sakai, and R. Kaibyshev, Dynamic Recrystallization Mechanisms Operating in a Ni–20% Cr Alloy Under Hot–to–Warm Working, Acta Mater., 2010, 58, p 3624–3632

    CAS  Google Scholar 

  14. A. Chaudhuri, A. Sarkar, R. Kapoor, J.K. Chakravartty, R.K. Ray, and S. Suwas, Understanding the Mechanism of Dynamic Recrystallization During High-Temperature Deformation in Nb-1Zr-0.1C alloy, J. Mater. Eng. Perform., 2019, 28, p 448–462

    CAS  Google Scholar 

  15. X.T. Zhong, L. Wang, and F. Liu, Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028, Acta Metall. Sin., 2018, 54(7), p 969–980

    CAS  Google Scholar 

  16. H. Miura, T. Sakai, S. Andiarwanto, and J.J. Jonas, Nucleation of dynamic Recrystallization at Triple Junctions in Polycrystalline Copper, Philos. Mag., 2005, 85(23), p 2653–2669

    CAS  Google Scholar 

  17. S.Q. Zhu, H.G. Yan, X.Z. Liao, S.J. Moody, G. Sha, Y.Z. Wu, and S.P. Ringer, Mechanisms for Enhanced Plasticity in Magnesium Alloys, Acta Mater., 2015, 82, p 344–355

    CAS  Google Scholar 

  18. M. Azarbarmas, M. Aghaie-Khafri, A.M. Cabrera, and J. Calvo, Dynamic Recrystallization Mechanisms and Twining Evolution During Hot Deformation of Inconel 718, Mater. Sci. Eng. A, 2016, 678, p 137–152

    CAS  Google Scholar 

  19. A. Belyakov, H. Miura, and T. Sakai, Dynamic Recrystallization Under Warm Deformation of Polycrystalline Copper, ISIJ Int., 1998, 38, p 595–601

    CAS  Google Scholar 

  20. H. Miura, T. Sakai, R. Mogawa, and J.J. Jonas, Nucleation of Dynamic Recrystallization and Variant Selection in Copper Bicrystals, Philos Mag., 2007, 87, p 4197–4209

    CAS  Google Scholar 

  21. A.M. Wusatowska-Sarnek, H. Miura, and T. Sakai, Nucleation and Microtexture Development Under Dynamic Recrystallization of Copper, Mater. Sci. Eng. A, 2002, 323, p 177–186

    Google Scholar 

  22. H. Miura, T. Sakai, R. Mogawa, and G. Gottstein, Nucleation of Dynamic Recrystallization at Grain Boundaries in Copper Bicrystals, Scr. Mater., 2004, 51, p 671–675

    CAS  Google Scholar 

  23. H. Beladi, P. Cizek, and P.D. Hodgson, Dynamic Recrystallization of Austenite in Ni–30 pct Fe Model Alloy Microstructure and Texture Evolution, Metall. Mater. Trans. A, 2009, 40, p 1175–1189

    Google Scholar 

  24. E. Brunger, X. Wang, and G. Gottstein, Nucleation Mechanisms of Dynamic Recrystallization in Austenitic Steel Alloy 800H, Scr. Mater., 1998, 38(12), p 1843–1849

    CAS  Google Scholar 

  25. S. Mandal, A.K. Bhaduri, and V.S. Sarma, Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti–Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2012, 43, p 2056–2068

    CAS  Google Scholar 

  26. D.G. Cram, H.S. Zurob, Y.J.M. Brechet, and C.R. Hutchinson, Modelling Discontinuous Dynamic Recrystallization Using a Physically Based Model for Nucleation, Acta Mater., 2009, 57, p 5218–5228

    CAS  Google Scholar 

  27. R. Ding and Z.X. Guo, Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow During Dynamic Recrystallization, Acta Mater., 2001, 49, p 3163–3175

    CAS  Google Scholar 

  28. C. Sommitsch and W. Mitter, On Modelling of Dynamic Recrystallization of FCC Materials with Low Stacking Fault Energy, Acta Mater., 2006, 54, p 357–375

    CAS  Google Scholar 

  29. P. Bernard, S. Bag, K. Huang, and R.E. Loge, A Two-Site Mean Field Model of Discontinuous Dynamic Recrystallization, Mater. Sci. Eng. A, 2011, 528, p 7357–7367

    CAS  Google Scholar 

  30. G.B. Shan, Y.Z. Chen, Y.J. Li, C.Y. Zhang, H. Dong, Y.B. Cong, W.X. Zhang, L.K. Huang, and F. Liu, High Temperature Creep Resistance of a Thermally Stable Nanocrystalline Fe-5 at.%, Scr. Mater., 2020, 179, p 1–5

    CAS  Google Scholar 

  31. A. Momeni, G.R. Ebrahimi, M. Jahazi, and P. Bocher, Microstructure Evolution at the Onset of Discontinuous Dynamic Recrystallization: A Physics-Based Model of Sub-Grain Critical Size, J. Alloys Compd., 2014, 587, p 199–210

    CAS  Google Scholar 

  32. O. Beltran, K. Huang, and R.E. Logé, A Mean Field Model of Dynamic and Post-Dynamic Recrystallization Predicting kinetics, Grain Size and Flow Stress, Comput. Mater. Sci., 2015, 102, p 293–303

    CAS  Google Scholar 

  33. Y. Huang and F.J. Humphreys, Measurements of Grain Boundary Mobility During Recrystallization of a Single-Phase Aluminum Alloy, Acta Mater., 1999, 47, p 2259–2268

    CAS  Google Scholar 

  34. G. Gottstein, D.A. Molodov, L.S. Shvindlerman, D.J. Srolovitz, and M. Winning, Grain Boundary Migration: Misorientation Dependence, Curr. Opin. Solid State Mater. Sci., 2001, 5, p 9–14

    CAS  Google Scholar 

  35. V. Randle, Twinning-Related Grain Boundary Engineering, Acta Mater., 2004, 52, p 4067–4081

    CAS  Google Scholar 

  36. H. Jiang, J.X. Dong, M.C. Zhang, and Z.H. Yao, Evolution of Twins and Substructures During Low Strain Rate Hot Deformation and Contribution to Dynamic Recrystallization in Alloy 617B, Mater. Sci. Eng. A, 2016, 649, p 369–381

    CAS  Google Scholar 

  37. F.C. Liu and T.W. Nelson, Twining and Dynamic Recrystallization in Austenitic Alloy 718 During Friction Welding, Mater. Charact., 2018, 140, p 39–44

    CAS  Google Scholar 

  38. D.P. Field, L.T. Bradford, M.M. Nowell, and T.M. Lillo, The Role of Annealing Twins During Recrystallization of Cu, Acta Mater., 2007, 55(12), p 4233–4241

    CAS  Google Scholar 

  39. G.R. Ebrahimi, A. Momeni, H.R. Ezatpour, M. Jahazid, and P. Bocherd, Dynamic Recrystallization in Monel400 Ni–Cu Alloy: Mechanism and Role of Twinning, Mater. Sci. Eng. A, 2019, 744, p 376–385

    CAS  Google Scholar 

  40. D.G. Brandon, The Structure of High-Angle Grain Boundaries, Acta Metall., 1966, 14(11), p 1479–1484

    CAS  Google Scholar 

  41. G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, and E.P. George, Microstructure Evolution and Critical Stress for Twinning in the CrMnFeCoNi High-Entropy Alloy, Acta Mater., 2016, 118, p 152–163

    CAS  Google Scholar 

  42. S. Sahu, P.C. Yadav, and S. Shekhar, Use of Hot Rolling for Generating Low Deviation Twins and a Disconnected Random Boundary Network in Inconel 600 Alloy, Metall. Mater. Trans. A, 2018, 49, p 628–643

    CAS  Google Scholar 

  43. X.T. Zhong, L. Wang, L.K. Huang, and F. Liu, Transition of Dynamic Recrystallization Mechanism During Hot Deformation of Incoloy 028 Alloy, J. Mater. Sci. Technol., 2020, 42, p 241–253

    Google Scholar 

  44. L. Wang, F. Liu, Q. Zuo, J.J. Cheng, and C.F. Chen, Processing Map and Mechanism of Hot Deformation of a Corrosion-Resistant Nickel-Based Alloy, J. Mater. Eng. Perform., 2017, 26, p 392–406

    CAS  Google Scholar 

  45. C.S. Pande, M.A. Imam, and B.B. Rath, Study of Annealing Twins in FCC Metals and Alloys, Metall. Trans. A, 1990, 21(11), p 2891–2896

    Google Scholar 

  46. N. Bozzolo, N. Souaï, and R.E. Logé, Evolution of Microstructure and Twin Density During Thermomechanical Processing in a γ-γ’ Nickel-Based Superalloy, Acta Mater., 2012, 60(13–14), p 5056–5066

    CAS  Google Scholar 

  47. Y. Jin, B. Lin, M. Bernacki, G.S. Rohrer, A.D. Rollett, and N. Bozzolo, Annealing Twin Development During Recrystallization and Grain Growth in Pure Nickel, Mater. Sci. Eng., A, 2014, 597, p 295–303

    CAS  Google Scholar 

  48. Z.G. Li, L.T. Zhang, N.R. Sun, Y.L. Sun, and A.D. Shan, Effects of Prior Deformation and Annealing Process on Microstructure and Annealing Twin Density in a Nickel-Based Alloy, Mater. Charact., 2014, 95, p 299–306

    CAS  Google Scholar 

  49. X.T. Zhong, L.K. Huang, L. Wang, and F. Liu, A Discontinuous Dynamic Recrystallization Model Incorporating the Characteristics of Initial Microstructure, T. Nonferr. Metal. Soc., 2018, 28, p 2294–2306

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant Numbers 2017YFB0703001, 2017YFB0305100); the Natural Science Foundation of China (Grant Numbers 51790481, 51901185); the Fundamental Research Funds for the Central Universities (Grant Number 3102017jc01002); and the Natural Science Foundation of Shaanxi Province (Grant Number 2020JQ-153). We would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for EBSD and TEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to LinKe Huang or Feng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Huang, L. & Liu, F. Discontinuous Dynamic Recrystallization Mechanism and Twinning Evolution during Hot Deformation of Incoloy 825. J. of Materi Eng and Perform 29, 6155–6169 (2020). https://doi.org/10.1007/s11665-020-05093-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05093-1

Keywords

Navigation