Skip to main content
Log in

The Effect of Severe Plastic Deformation on the Corrosion Resistance of AISI Type 304L Stainless Steel

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The AISI type 304L stainless steel (SS) was solution annealed at 1050 °C and cryo-rolled at liquid nitrogen (L-N2) temperature (77 K) under severe plastic deformation (SPD). The thickness reduction through cryo-rolling plastic deformation was carried out up to 90% (designated as CR-90) of initial thickness. The cryo-rolling during rolling at liquid N2 temperature (77 K), resulted in transformation induced plastic deformation of the austenite γ-phase into α’- martensite phase. The phase transformation was characterized by x-ray diffraction (XRD) and saturation magnetization (Ms) measurement. The microstructure was measured by using optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD peak positions confirmed the martensite (α’) phase formation. Saturation magnetization (Ms) value of the cryo-rolled specimens shows increasing linearity with cryo-rolling, and transformed to bct martensite (α’). The measured corrosion rate of the cryo-rolled specimens as per ASTM A-262 practice-C test (Huey test) ranges from 6.6 mpy or 0.167 mm/yr (CR 0) to 12.9 mpy or 0.328 mm/yr (CR 90), indicating the effects of severe deformation of strain-induced martensite with the cryo-rolling. Further, the role of severe deformation of strain-induced martensite with the cryo-rolling on AISI type 304L SS and also influence on the corrosion resistance are investigated in detail. The deformation microstructure roles, i.e., the phases and volume percentage induced by the different percentage of the cryo-rolling that influences the corrosion resistance properties and corresponding corrosion resistance in nitric acid have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. G. Krauss and A.R. Marder, The Morphology of Martensite in Iron Alloys, Metall. Trans., 1971, 2, p 2343–2357

    CAS  Google Scholar 

  2. N. Yasumaru, Low-Temperature Ion Nitriding Of Austenitic Stainless Steels, Mater. Trans., 1998, 39, p 1046

    CAS  Google Scholar 

  3. Z.Z. Yuan, Q.X. Dai, and Q. Zhang, Effects of Temperature Cycling And Nitrogen on the Stability of Microstructures in Austenitic Stainless Steels, Mater. Character., 2008, 59, p 18–22

    CAS  Google Scholar 

  4. J.H. Kim, S.W. Choi, D.H. Park, and J.M. Lee, Charpy Impact Properties Of Stainless Steel Weldment in Liquefied Natural Gas Pipelines: Effect of Low Temperatures, Mater. Des., 2015, 65, p 914–922

    CAS  Google Scholar 

  5. S. Ningshen and U.K. Mudali, Pitting Intergranular Corrosion Resistance of AISI, Type 301LN Stainless Steels, J. Mater. Eng. Perform., 2010, 19(2), p 274–281

    CAS  Google Scholar 

  6. S. Qu, C.X. Huang, Y.L. Gao, G. Yang, S.D. Wu, Q.S. Zang, and Z.F. Zhang, Tensile and Compressive Properties of AISI, 304L Stainless Steel Subjected to Equal Channel Angular Pressing, Mater. Sci. Eng., A, 2008, 475, p 207–216

    Google Scholar 

  7. S.S.M. Tavaresa, J.M. Pardala, M.R. da Silva, and C.A.S. de Oliveirac, Martensitic Transformation Induced by Cold Deformation of Lean Duplex Stainless Steel Uns S32304, Mat. Res., 2014, 1, p 381–385

    Google Scholar 

  8. T.N. Prasanthi, C. Sudha, P.K. Parida, A. Dasgupta, and S. Saroja, Optimization of Heat Treatments for Reversion of Strain-Induced Martensite in 304L SS Explosive Clad, J. Mater. Eng. Perform., 2016, 25(2), p 536–544

    CAS  Google Scholar 

  9. H.G. Nanesa, M. Jahazi, and R. Naraghi, Martensitic Transformation in AISI, D2 Tool Steel, J. Mater. Sci., 2015, 50, p 5758–5768

    CAS  Google Scholar 

  10. A. Aletdinov, S. Mironov, G. Korznikova, T. Konkova, R. Zaripova, M. Myshlyaev, and S.L. Semiatin, EBSD Investigation of Microstructure Evolution during Cryogenic Rolling of Type 321 Metastable Austenitic Steel, Mater. Sci. Eng., A, 2019, 745, p 460–473

    CAS  Google Scholar 

  11. K. Mumtaz, S. Takahashi, J. Echigoya, Y. Kamada, L.F. Zhang, H. Kikuchi, K. Ara, and M. Sato, Magnetic Measurements of Martensitic Transformation in Austenitic Stainless Steel after Room Temperature Rolling, J. Mater. Sci., 2004, 39, p 85–97

    CAS  Google Scholar 

  12. A.K. Roy, A. Venkatesh, V. Marthandam, S.B. Dronavalli, D. Wells, and R. Rogge, Residual Stress Characterization in Structural Materials by Destructive and Nondestructive Techniques, J. Mater. Eng. Perform., 2005, 14(2), p 203–211

    CAS  Google Scholar 

  13. W. Han, Y. Liu, F. Wan, P. Liu, X. Yi, Q. Zhan, D. Morrall, and S. Ohnuki, Deformation Behavior of Austenitic Stainless Steel at Deep Cryogenic Temperatures, J. Nucl. Mater., 2018, 504, p 29–32

    CAS  Google Scholar 

  14. G. Prieto and W.R. Tuckart, Influence of Cryogenic Treatments on the Wear Behavior of AISI, 420 Martensitic Stainless Steel, J. Mater. Eng. Perform., 2017, 26(11), p 5262–5271

    CAS  Google Scholar 

  15. C. Cabet, F. Dalle, E. Gaganidze, J. Henry, and H. Tanigawa, Ferritic-Martensitic Steels for Fission and Fusion Applications, J. Nucl. Mater., 2019, 523, p 510–537

    CAS  Google Scholar 

  16. D.S. Gelles, Development of Martensitic Steels for High Neutron Damage Applications, J. Nucl. Mater., 1996, 239, p 99–106

    CAS  Google Scholar 

  17. C.D. Horvath, Materials, Design and Manufacturing for Lightweight Vehicles, Woodhead Publishing Series in Composites Science and Engineering Elsevier, Amsterdam, 2010, p 35–78

    Google Scholar 

  18. J.M. Jani, M. Leary, A. Subic, and M.A. Gibson, A Review of Shape Memory Alloy Research, Applications and Opportunities, Mater. Des., 2014, 56, p 1078–1113

    Google Scholar 

  19. J.A. Lichtenfeld, M.C. Mataya, and C.J.V. Tyne, Effect of Strain Rate on Stress-Strain Behavior Of Alloy 309 and 304L Austenitic Stainless Steel, Metall. Mat. Trans. A, 2006, 37A, p 147–161

    CAS  Google Scholar 

  20. G. Shit, P. Bhaskar, S. Ningshen, A. Dasgupta, U. Kamachi Mudali, A. K. Bhaduri, Phase transition of AISI Type 304L stainless steel induced by severe plastic deformation via cryo-rolling. in AIP Conference Proceedings 2017, 1832, p 030020.

  21. P.L. Mangonon, Jr, and G. Thomas, Structure and Properties of Thermal-Mechanically Treated 304 Stainless Steel, Metall. Trans., 1970, 1, p 1587–1594

    CAS  Google Scholar 

  22. S.S.M. Tavares, D. Fruchart, and S. Miraglia, A Magnetic Study of the Reversion of Martensite α` in a 304 Stainless Steel, J. Alloys Compd., 2000, 307, p 311–317

    CAS  Google Scholar 

  23. V. Seetharaman and R. Krishman, Influence of the Martensitic Transformation on the Deformation Behaviour of an AISI, 316 Stainless Steel at Low Temperatures, J. Mater. Sci., 1981, 16, p 523–530

    CAS  Google Scholar 

  24. “Standard practices for detecting susceptibility to intergranular attack in austenitic stainless steels”, ASTM Designation A-262, 2014, pp. 1–20.

  25. U. Kamachi Mudali, R.K. Dayal, and J.B. Gnanamoorthy, Corrosion studies on materials of construction for spent nuclear fuel reprocessing plant equipment, J. Nucl. Mater, 1993, 203, p 73–82

    Google Scholar 

  26. G. Shit and S. Ningshen, The corrosion behaviour of compositional modified AISI, type 304L stainless steel for nitric acid application, Anti-Corros. Method. M., 2019, 66, p 149–158

    CAS  Google Scholar 

  27. G.K. Williamson and W.H. Hall, X-Ray Line Broadening from Filed Aluminium and Wolfram, Acta Mater., 1953, 1, p 22–31

    CAS  Google Scholar 

  28. M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater Sci., 2006, 51, p 427–556

    CAS  Google Scholar 

  29. G.K. Williamson and R.E. Smallman, III, Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the x-ray Debye-Scherrer Spectrum, Phil. Mag., 1956, 1, p 34–46

    CAS  Google Scholar 

  30. P. Bhaskar, A. Dasgupta, V.S. Sarma, U.K. Mudali, and S. Saroja, Mechanical Properties and Corrosion Behaviour of Nanocrystalline Ti-5Ta-1.8Nb Alloy produced by Cryo-Rolling, Mater. Sci. Eng. A, 2014, 616, p 71–77

    CAS  Google Scholar 

  31. F. Kroupa, J. de Physique Collo-ques, 1966, 27, p 154–167

    Google Scholar 

  32. A. Yoshie, T. Fujita, M. Fujioka, K. Okamoto, H. Morikawa, and H. Mabuch, ISIJ Int., 1996, 36, p 444–450

    Google Scholar 

  33. G. Herzer, Grain Size Dependence of Coercivity and Permeability in Nanocrystalline Ferromagnets, IEEE Trans. Magn., 1990, 26, p 1397–1402

    CAS  Google Scholar 

  34. K. Nishimura, T. Namiki, T. Ikeno, Y. Yamamoto, and W.D. Hutchison, Magnetic and Transport Properties of Stainless Steels at Low Temperature, Acta Metall. Slovaca, 2017, 23, p 257–263

    Google Scholar 

  35. C. Kim, Nondestructive Evaluation of Strain-Induced Phase Transformation and Damage Accumulation in Austenitic Stainless Steel Subjected to Cyclic Loading, Metals, 2018, 8, p 14

    Google Scholar 

  36. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45, p 103–189

    CAS  Google Scholar 

  37. S. H. M. Anijdan, H. R. Jafarian, A. Bahrami, Microstructuralcharacteristics of nano-structured Fe-28.5Ni steel by means of severe plastic deformation. in IOP Conf. Ser.: Mater. Sci. Eng. (2017), 194, p 012051.

  38. B.R. Kumar, S. Sharma, and B. Mahato, Formation of Ultrafine Grained Microstructure in the Austenitic Stainless Steel and its Impact on Tensile Properties, Mater. Sci. Eng. A, 2011, 528, p 2209–2216

    Google Scholar 

  39. J.A. Lichtenfeld, M.C. Mataya, and C.J.V. Tyne, Effect of Strain Rate on Stress-Strain Behavior of Alloy 309 and 304L Austenitic Stainless Steel, Metall. Mater. Trans. A, 2006, 37A, p 147–161

    CAS  Google Scholar 

  40. G. Olson and M. Cohen, A General Mechanism of Martensitic Nucleation: Part I. General Concepts and the FCC → HCP Transformation, Metall. Trans. A, 1976, 7A, p 1897–1904

    CAS  Google Scholar 

  41. J.W. Brooks, M.H. Loretto, and R.E. Smallman, In Situ Observations of the Formation of Martensite in Stainless Steel, Acta Mater., 1979, 27, p 1829–1838D

    CAS  Google Scholar 

  42. G. Suresh, P.K. Parida, S. Bandi, and S. Ningshen, Effect of Carbon Content on the Low Temperature Sensitization of 304L SS and its Corrosion Resistance in Simulated Ground Water, Mat. Chem. Physics., 2019, 226, p 184–194

    CAS  Google Scholar 

  43. V. Kain, S.S. Shinde, and H.S. Gadiyar, Mechanism of Improved Corrosion Resistance of Type 304 l Stainless Steel, Nitric Acid Grade, in Nitric Acid Environments, J. Mater. Eng. Perfor., 1994, 3, p 699–705

    CAS  Google Scholar 

  44. G. Shit, M.V. Kuppusamy, and S. Ningshen, Corrosion Resistance Behavior of GTAW Welded AISI, Type 304L Stainless Steel, Trans. Indian Inst. Met., 2019, 72(12), p 2981–2995

    CAS  Google Scholar 

  45. A.R. Shankar, S.S. Babu, M. Ashfaq, U.K. Mudali, K.P. Rao, N. Saibaba, and B. Raj, Dissimilar Joining of Zircaloy-4 to Type 304L Stainless Steel by Friction Welding Process, J. Mater. Eng. Perform., 2009, 18(9), p 1272–1279

    Google Scholar 

  46. R. Sundar, P. Ganesh, B. Sunil Kumar, R.K. Gupta, D.C. Nagpure, R. Kaul, K. Ranganathan, K.S. Bindra, V. Kain, S.M. Oak, and B. Singh, Mitigation of Stress Corrosion Cracking Susceptibility of Machined 304L Stainless Steel through Laser Peening, J. Mater. Eng. Perform., 2016, 25(9), p 3710–3724

    CAS  Google Scholar 

  47. B.R. Kumar, R. Singh, B. Mahato, P.K. De, N.R. Bandyopadhyay, and D.K. Bhattacharya, Effect of Texture on Corrosion Behavior of AISI, 304L Stainless Steel, Mater. Charact., 2005, 54, p 141–147

    CAS  Google Scholar 

  48. E.A. Trillo, R. Beltran, J.G. Maldonado, R.J. Romero, L.E. Mun, W.W. Fisher, and A.H. Advani, Combined Effects of Deformation (Strain and Strain State), Grain Size, and Carbon Content on Carbide Precipitation and Corrosion Sensitization in 304 Stainless Steel, Mater. Charact., 1995, 35, p 99–112

    CAS  Google Scholar 

  49. P.K. Rai, S. Shekhar, M. Nakatani, M. Ota, S.K. Vajpai, K. Ameyama, and K. Mondal, Wear Behavior of Harmonic Structured 304L Stainless Steel, J. Mater. Eng. Perform., 2017, 26(6), p 2608–2618

    CAS  Google Scholar 

  50. H. Miyamoto, K. Harada, T. Mimaki, A. Vinogradov, and S. Hashimoto, Corrosion of Ultra-Fine Grained Copper Fabricated by Equal-Channel Angular Pressing, Corros. Sci., 2008, 50, p 1215–1220

    CAS  Google Scholar 

  51. P.C. S. Wu, Sensitization, Intergranular attack, Stress Corrosion Cracking, and Irradiation Effects on the Corrosion of Iron-Chromium-Nickel alloys, ORNL, (1978), ORNL/TM-6311 pp. 1–100

  52. R. Singh, B. Ravikumar, A. Kumar, P.K. Dey, and I. Chattoraj, The Effects of Cold Working on Sensitization and Intergranular Corrosion Behavior of AISI, 304 Stainless Steel, Metall. Trans. A, 2003, 34A, p 2441–2447

    CAS  Google Scholar 

  53. A.D. Schino and J.M. Kenny, Effects of the Grain Size on the Corrosion Behavior of Refined AISI, 304 Austenitic Stainless Steels, J. Mater. Sci. Lett., 2002, 21, p 1631–1634

    Google Scholar 

  54. P. Fauvet, F. Balbaud, R. Robin, Q.T. Tran, A. Mugnier, and D. Espinoux, Corrosion Mechanisms of Austenitic Stainless Steels in Nitric Media used in Reprocessing Plants, J. Nucl. Mater., 2008, 375, p 52–64

    CAS  Google Scholar 

  55. S. Ningshen and M. Sakairi, Corrosion Degradation of AISI, type 304L Stainless Steel for Application in Nuclear Reprocessing Plant, J. Solid State Electrochem., 2015, 19, p 3533–3542

    CAS  Google Scholar 

  56. M. Mayuzumi, J. Ohta, K. Kako, and E. Kawakami, Effect of Various Impurities on the Transpassive Corrosion of High-Purity Fe-18%Cr 14%Ni Alloys, Corrosion, 2001, 57, p 889–897

    CAS  Google Scholar 

  57. S. Kumar, A. Kumar, R. Vinaya, R.Sah Madhusudhan, and S. Manjin, Mechanical and Electrochemical Behavior of Dual-PhaseSteels Having Varying Ferrite–Martensite Volume Fractions, J. Mater. Eng. Perform., 2019, 28(6), p 3600–3613

    CAS  Google Scholar 

  58. N. Srinivasan and S.S. Kumaran, Role of Alloy Chemistry on Stability of Passive Films in Austenitic Stainless Steel, J. Mater. Eng. Perform., 2019, 28(6), p 3695–3703

    CAS  Google Scholar 

  59. P.M. Ahmedabadi, V. Kain, and A. Agrawal, Effect of Plastic Deformation on Passivation Characteristics of Type 304 Stainless Steel, J. Mater. Eng. Perform., 2019, 28(11), p 7036–7046

    CAS  Google Scholar 

  60. R.K. Gupta and N. Birbilis, The Influence of Nanocrystalline Structure and Processing Route on Corrosion of Stainless Steel: A Review, Corros. Sci., 2015, 92, p 1–15

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr.K.Mariyappan, MMG, IGCAR for recording SEM and EDS spectra, Dr. Awadesh Mani Tiwari, MSG, IGCAR for providing VSM facility; Dr. Arup Dasgupta, PMD, IGCAR for fruitful discussion and also for the TEM analysis. The author sincerely thanks to IGCAR management for their constant support and encouragement during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ningshen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shit, G., Ningshen, S. The Effect of Severe Plastic Deformation on the Corrosion Resistance of AISI Type 304L Stainless Steel. J. of Materi Eng and Perform 29, 5696–5709 (2020). https://doi.org/10.1007/s11665-020-05063-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05063-7

Keywords

Navigation