Skip to main content
Log in

Stress–Strain Properties of Artificially Aged 6061 Al Alloy: Experiments and Modeling

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The paper examines the tensile deformation behavior of the Al-Mg-Si alloy (6061 Al alloy) subjected to various aging conditions. 6061 Al alloy is commonly used in aerospace/aircraft industry due to its performance on corrosion resistance, formability, and weldability. Five different heat treatment procedures, including T4 natural aging and T6 peak-strength temper conditions, were designed to investigate the effect of artificial aging on the mechanical behavior of the alloy. Tensile tests were performed to determine the stress–strain behavior of the material both in uniform and non-uniform deformation regions. Mechanical material properties including yield, ultimate and fracture strengths, uniform and total strains, hardness, strength coefficient, and strain-hardening exponent were obtained experimentally. The relationship between equivalent strain, equivalent stress, and hardness is also examined. The fracture strength of specimens was determined to be less than the Holloman model predictions for the fracture strains of specimens. Void development, which is dependent on the amount of plastic strain development, is determined to be the main reason for this discrepancy between the Holloman model and fracture stress. To calculate the homogeneous stress in the metal matrix of the porous domain, Eshelby-based Mori–Tanaka method (MTM) was used. The calculated average stress in the metal matrix shows good agreement with the Holloman equation predictions. Thus, void development explains the interrupted strain hardening after necking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Recent Development in Aluminium Alloys for the Automotive Industry, Mater. Sci. Eng., A, 2000, 280(1), p 37–49

    Article  Google Scholar 

  2. D.S.M. George and E. Totten, Handbook of Aluminum, Marcel Dekker, New York, NY, 2003

    Google Scholar 

  3. J.C. Benedyk, 3—Aluminum Alloys for Lightweight Automotive Structures, Mater. Des. Manuf. Lightweight Veh., 2010, https://doi.org/10.1533/9781845697822.1.79

    Article  Google Scholar 

  4. J. Buha, R.N. Lumley, and A.G. Crosky, Microstructural Development and Mechanical Properties of Interrupted Aged Al-Mg-Si-Cu Alloy, Metall. Mater. Trans. A, 2006, 37(10), p 3119–3130

    Article  Google Scholar 

  5. Z. Chen, G. Fang, and J.Q. Zhao, Formability Evaluation of Aluminum Alloy 6061-T6 Sheet at Room and Elevated Temperatures, J. Mater. Eng. Perform., 2017, 26(9), p 4626–4637

    Article  CAS  Google Scholar 

  6. R. Braun, On the Stress Corrosion Cracking Behaviour of 6XXX Series Aluminium Alloys, Int. J. Mater. Res., 2010, 101(5), p 657–668

    Article  CAS  Google Scholar 

  7. C. ASM Handbook Committe, ASM Metals Handbook Volume 4, 10th ed., ASM International, Cleveland, OH, 1991

    Google Scholar 

  8. C.D. Marioara, H. Nordmark, S.J. Andersen, and R. Holmestad, Post-β″ Phases and Their Influence on Microstructure and Hardness in 6xxx Al-Mg-Si Alloys, J. Mater. Sci., 2006, 41(2), p 471–478

    Article  CAS  Google Scholar 

  9. R.S. Yassar, D.P. Field, and H. Weiland, Transmission Electron Microscopy and Differential Scanning Calorimetry Studies on the Precipitation Sequence in an Al-Mg-Si Alloy: AA6022, J. Mater. Res., 2005, 20(10), p 2705–2711

    Article  CAS  Google Scholar 

  10. S. Pogatscher, H. Antrekowitsch, T. Ebner, and P.J. Uggowitzer, The Role of Co-Clusters in the Artificial Aging of AA6061 and AA6060, Light Metals, C.E. Suarez, Ed., Springer, Cham, 2012, p 415–420

    Google Scholar 

  11. I. Dutta and S.M. Allen, A Calorimetric Study of Precipitation in Aluminum Alloy 6061, J. Mater. Sci. Lett., 1991, 10, p 323–326. https://doi.org/10.1007/BF00719697

    Article  CAS  Google Scholar 

  12. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper, The Precipitation Sequence in Al-Mg-Si Alloys, Acta Mater., 1998, 46(11), p 3893–3904

    Article  CAS  Google Scholar 

  13. J. Buha, R.N. Lumley, A.G. Crosky, and K. Hono, Secondary Precipitation in an Al-Mg-Si-Cu Alloy, Acta Mater., 2007, 55(9), p 3015–3024

    Article  CAS  Google Scholar 

  14. V. Massardier, T. Epicier, and P. Merle, Correlation between the Microstructural Evolution of A 6061 Aluminium Alloy and the Evolution of Its Thermoelectric Power, Acta Mater., 2000, 48(11), p 2911–2924

    Article  CAS  Google Scholar 

  15. D. Maisonnette, M. Suery, D. Nelias, P. Chaudet, and T. Epicier, Effects of Heat Treatments on the Microstructure and Mechanical Properties of a 6061 Aluminium Alloy, Mater. Sci. Eng., A, 2011, 528(6), p 2718–2724. https://doi.org/10.1016/j.msea.2010.12.011

    Article  CAS  Google Scholar 

  16. F. Ozturk, A. Sisman, S. Toros, S. Kilic, and R.C. Picu, Influence of Aging Treatment on Mechanical Properties of 6061 Aluminum Alloy, Mater. Des., 2010, 31(2), p 972–975. https://doi.org/10.1016/j.matdes.2009.08.017

    Article  CAS  Google Scholar 

  17. C. Xu, H. He, W. Yu, and L. Li, Influence of Quenching Temperature on Peak Aging Time and Hardness of Al-Mg-Si-Cu Alloys Strengthened by Nano-Sized Precipitates, Mater. Sci. Eng., A, August 2019, 744(2018), p 28–35. https://doi.org/10.1016/j.msea.2018.11.149

    Article  CAS  Google Scholar 

  18. T. Petit, J. Besson, C. Ritter, K. Colas, L. Helfen, and T.F. Morgeneyer, Effect of Hardening on Toughness Captured by Stress-Based Damage Nucleation in 6061 Aluminum Alloy, Acta Mater., 2019, 180, p 349–365. https://doi.org/10.1016/j.actamat.2019.08.055

    Article  CAS  Google Scholar 

  19. B.S. Aakash, J.P. Connors, and M.D. Shields, Variability in the Thermo-Mechanical Behavior of Structural Aluminum, Thin-Walled Struct., 2019, 144(January), p 106122. https://doi.org/10.1016/j.tws.2019.01.053

    Article  Google Scholar 

  20. Y. Zhu and M.D. Engelhardt, Prediction of Ductile Fracture for Metal Alloys Using a Shear Modified Void Growth Model, Eng. Fract. Mech., 2018, 190, p 491–513. https://doi.org/10.1016/j.engfracmech.2017.12.042

    Article  Google Scholar 

  21. J. Banhart, C.S.T. Chang, Z. Liang, N. Wanderka, M.D.H. Lay, and A.J. Hill, Natural Aging in Al-Mg-Si Alloys—A Process of Unexpected Complexity, Adv. Eng. Mater., 2010, 12(7), p 559–571

    Article  CAS  Google Scholar 

  22. ASTM, Standard Test Methods for Tension Testing of Metallic Materials, ASTM, West Conshohocken, PA, 2009, https://doi.org/10.1520/e0008

    Book  Google Scholar 

  23. ASTM, ASTM E384-11. Standard Test Method for Knoop and Vickers Hardness of Materials, 2011, p 43

  24. S.J. Andersen, H.W. Zandbergen, J. Jansen, C. TrÆholt, U. Tundal, and O. Reiso, The Crystal Structure of the Β″ Phase in Al-Mg-Si Alloys, Acta Mater., 1998, 46(9), p 3283–3298

    Article  CAS  Google Scholar 

  25. ASTM Standard, B209M-14: Standard Specification for Aluminum and Aluminum Alloy Sheet and Plate, ASTM Int., 2014, (November), p 1–26.

  26. K.K. Saxena, K. Drotleff, and J. Mukhopadhyay, Elevated Temperature Forming Limit Strain Diagrams of Automotive Alloys Al6014-T4 and DP600: A Case Study, J. Strain Anal. Eng. Des., 2016, 51(6), p 459–470. https://doi.org/10.1177/0309324716651028

    Article  Google Scholar 

  27. T. Altan, S.-I. Oh, and H. Gegel, Metal Forming, 7th ed., American Society for Metals, Cleveland, OH, 2000

    Google Scholar 

  28. S. Wang, Z. Chen, and C. Dong, Tearing Failure of Ultra-Thin Sheet-Metal Involving Size Effect in Blanking Process: Analysis Based on Modified GTN Model, Int. J. Mech. Sci., 2017, 133(April), p 288–302. https://doi.org/10.1016/j.ijmecsci.2017.08.028

    Article  Google Scholar 

  29. A.O. Adesola, A.G. Odeshi, and U.D. Lanke, The Effects of Aging Treatment and Strain Rates on Damage Evolution in AA 6061 Aluminum Alloy in Compression, Mater. Des., 2013, 45, p 212–221. https://doi.org/10.1016/j.matdes.2012.08.021

    Article  CAS  Google Scholar 

  30. P. Zhang, S.X. Li, and Z.F. Zhang, General Relationship between Strength and Hardness, Mater. Sci. Eng., A, 2011, 529(1), p 62–73

    Article  CAS  Google Scholar 

  31. J.M. Choung and S.R. Cho, Study on True Stress Correction from Tensile Tests, J. Mech. Sci. Technol., 2008, 22(6), p 1039–1051

    Article  Google Scholar 

  32. W. Hosford and R. Caddell, Metal Forming, 3rd ed., Cambridge University Press, Cambridge, 2007

    Book  Google Scholar 

  33. H. Agarwal, A.M. Gokhale, S. Graham, and M.F. Horstemeyer, Void Growth in 6061-Aluminum Alloy Under Triaxial Stress State, Mater. Sci. Eng., A, 2003, 341(1-2), p 35–42

    Article  Google Scholar 

  34. J.D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci., 1957, 241(1226), p 376–396. https://doi.org/10.1098/rspa.1957.0133

    Article  Google Scholar 

  35. T. Mori and K. Tanaka, Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions, Acta Metall., 1973, 21(5), p 571–574. https://doi.org/10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

Download references

Acknowledgments

Funding: This study was funded by Istanbul Technical University (BAP Project No. 38489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasid Ahmed Yildiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, R.A., Yilmaz, S. Stress–Strain Properties of Artificially Aged 6061 Al Alloy: Experiments and Modeling. J. of Materi Eng and Perform 29, 5764–5775 (2020). https://doi.org/10.1007/s11665-020-05080-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05080-6

Keywords

Navigation