Skip to main content
Log in

Micro/Meso-Scale Equal Channel Angular Pressing of Al 1070 Alloy: Microstructure and Mechanical Properties

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, Al 1070 alloy pins were processed via micro/meso-scale equal channel angular pressing (channel diameter 1.5 mm, the smallest channel diameter has ever been achieved in mesoscale), up to four passes at room temperature. The microstructure characteristics, i.e., grain size, and misorientation angle distributions were analyzed by high-resolution electron backscatter diffraction on the transverse plane for the ECAPed samples. Tensile properties for such small processed pins were measured by constructed micro/meso-scale tensile machine. The gauge length and the gauge diameter were 2 mm and 1.5 mm, respectively. After the fourth ECAP pass, the results revealed that the microstructure was refined remarkably from 15.5 μm (the initial undeformed sample) to nearly 1.9 μm due to the gradual transformation of the low-angle grain boundaries into high-angle grain boundaries as a result of the occurrence of grain subdivision. Micro/meso-scale ECAP does a significant enhancement in the ultimate tensile strength by 63%, whereas the ductility decreased after the fourth ECAP pass by 47.3% and this is supposed to be ascribed to the continuous decrease in subgrain size. The above results prove that the ECAP process has the potential for obtaining fine grains and improving material tensile properties even in micro/meso-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. X. Lai, L. Peng, P. Hu, S. Lan, and J. Ni, Material Behavior Modelling in Micro/Meso-Scale Forming Process with Considering Size/Scale Effects, Comput. Mater. Sci., 2008, 43(4), p 1003–1009

    Google Scholar 

  2. F. Vollertsen, H.S. Niehoff, and Z. Hu, State of the Art in Micro Forming, Int. J. Mach. Tools Manuf, 2006, 46(11), p 1172–1179

    Google Scholar 

  3. N. Krishnan, J. Cao, and K. Dohda, Study of the Size Effect on Friction Conditions in Microextrusion—Part I: Microextrusion Experiments and Analysis, J. Manuf. Sci. Eng., 2007, 129(4), p 669–676

    Google Scholar 

  4. H.Y. Wang, Z.H. Yao, and D.Q. Mei, On the Size Effects in Micro/Meso Upsetting of Brass H62 at Elevated Temperatures, Trans. Technol. Publ., 2014, 621, p 158–164

    Google Scholar 

  5. C. Wang, H. Wang, S. Xue, G. Chen, Y. Wang, S. Wang, and P. Zhang, Size effect affected mechanical properties and formability in micro plane strain deformation process of pure nickel, J. Mater. Process. Technol., 2018, 258, p 319–325

    CAS  Google Scholar 

  6. S.A. Parasiz, R. VanBenthysen, and B.L. Kinsey, Deformation size effects due to specimen and grain size in microbending, J. Manuf. Sci. Eng., 2010, 132(1), p 011018

    Google Scholar 

  7. F. Vollertsen, Dirk Biermann, Hans Nørgaard Hansen, I.S. Jawahir, and Karl Kuzman, Size Effects in Manufacturing of Metallic Components, CIRP Ann., 2009, 58(2), p 566–587

    Google Scholar 

  8. Z. Xu, L. Peng, P. Yi, and X. Lai, An Investigation on the Formability of Sheet Metals in the Micro/Meso Scale Hydroforming Process, Int. J. Mech. Sci., 2019, 150, p 265–276

    Google Scholar 

  9. U. Engel and R. Eckstein, Microforming—From Basic Research to its Realization, J. Mater. Process. Technol., 2002, 125, p 35–44

    Google Scholar 

  10. K.M. Geiger, R. Eckstein, N. Tiesler, and U. Engel, Microforming, CIRP Ann., 2001, 50(2), p 445–462

    Google Scholar 

  11. F. Vollertsen, Z. Hu, H.S. Niehoff, and C. Theiler, State of the Art in Micro Forming and Investigations Into Micro Deep Drawing, J. Mater. Process. Technol., 2004, 151(1), p 70–79

    Google Scholar 

  12. F. Vollertsen, H. Schulze Niehoff, and Z. Hu, State of the art in micro forming, International Journal of Machine Tools and Manufacture, 46(11), 1172-1179 (2006)

  13. M. Fu and W. Chan, A Review on the State-of-the-Art Microforming Technologies, Int. J. Adv. Manuf. Technol., 2013, 67(9–12), p 2411–2437

    Google Scholar 

  14. A. Rosochowski, W. Presz, L. Olejnik, and M. Richert, Micro-Extrusion of Ultra-Fine Grained Aluminium, Int. J. Adv. Manuf. Technol., 2007, 33(1–2), p 137–146

    Google Scholar 

  15. M. Yeh, H. Lin, H. Lin, and C. Chang, Superplastic Micro-Forming With a Fine Grained Zn–22Al Eutectoid Alloy Using Hot Embossing Technology, J. Mater. Process. Technol., 2006, 180(1–3), p 17–22

    CAS  Google Scholar 

  16. W. Kim and Y. Sa, Micro-Extrusion of ECAP Processed Magnesium Alloy for Production of High Strength Magnesium Micro-Gears, Scripta Mater., 2006, 54(7), p 1391–1395

    CAS  Google Scholar 

  17. J. Xu, L. Shi, C. Wang, D. Shan, and B. Guo, Micro Hot Embossing of Micro-Array Channels in Ultrafine-Grained Pure Aluminum Using a Silicon Die, J. Mater. Process. Technol., 2015, 225, p 375–384

    CAS  Google Scholar 

  18. V. Segal, V. Reznikov, A.E. Drobyshevskiy, and V. Kopylov, Plastic Metal Working by Simple Shear, Russ. Metall., 1981, 1, p 115–123

    Google Scholar 

  19. Z. Horita, T. Fujinami, and T.G. Langdon, The Potential for Scaling ECAP: Effect of Sample Size on Grain Refinement and Mechanical Properties, Mater. Sci. Eng., A, 2001, 318(1–2), p 34–41

    Google Scholar 

  20. M. Lefstad, K. Pedersen, and S. Dumoulin, Up-Scaled Equal Channel Angular Pressing of AA6060 and Subsequent Mechanical Properties, Mater. Sci. Eng., A, 2012, 535, p 235–240

    CAS  Google Scholar 

  21. A. Medvedev, H. Ng, R. Lapovok, Y. Estrin, T. Lowe, and V. Anumalasetty, Comparison of Laboratory-Scale and Industrial-Scale Equal Channel Angular Pressing of Commercial Purity Titanium, Mater. Lett., 2015, 145, p 308–311

    CAS  Google Scholar 

  22. S. Frint, M. Hockauf, P. Frint, and M.F.-X. Wagner, Scaling Up Segal’s Principle of Equal-Channel Angular Pressing, Mater. Des., 2016, 97, p 502–511

    Google Scholar 

  23. S. Ferrasse, V. Segal, F. Alford, J. Kardokus, and S. Strothers, Scale Up and Application of Equal-Channel Angular Extrusion for the Electronics and Aerospace Industries, Mater. Sci. Eng., A, 2008, 493(1–2), p 130–140

    Google Scholar 

  24. W. Abdel-Aziem, A. Hamada, T. Makino, M.A. Hassan, Microstructure Evolution of AA1070 Aluminum Alloy Processed by Micro/Meso-Scale Equal Channel Angular Pressing. Metals Mater. Int. 1–13 (2019)

  25. M.J. Qarni, G. Sivaswamy, A. Rosochowski, and S. Boczkal, On the Evolution of Microstructure and Texture in Commercial Purity Titanium During Multiple Passes of Incremental Equal Channel Angular Pressing (I-ECAP), Mater. Sci. Eng., A, 2017, 699, p 31–47

    CAS  Google Scholar 

  26. N. Hansen, X. Huang, and G. Winther, Effect of Grain Boundaries and Grain Orientation on Structure and Properties, Metall. Mater. Trans. A, 2011, 42(3), p 613–625

    CAS  Google Scholar 

  27. G. Winther, X. Huang, and N. Hansen, Crystallographic and Macroscopic Orientation of Planar Dislocation Boundaries—Correlation With Grain Orientation, Acta Mater., 2000, 48(9), p 2187–2198

    CAS  Google Scholar 

  28. Q. Liu, N. Hansen, C. Maurice, and J. Driver, Heterogeneous Microstructures and Microtextures in Cube-Oriented Al Crystals After Channel Die Compression, Metall. Mater. Trans. A, 1998, 29(9), p 2333–2344

    Google Scholar 

  29. Q. Ma, W. Mao, B. Li, P. Wang, M. Horstemeyer, Grain subdivision and its effect on texture evolution in an aluminum alloy under plane strain compression, Light Metals 2013ed., Springer, 2016, pp. 351–356

  30. G. Yang, Z. Li, Y. Yuan, and Q. Lei, Microstructure, Mechanical Properties and Electrical Conductivity of Cu–0.3 Mg–0.05 Ce Alloy Processed by Equal Channel Angular Pressing and Subsequent Annealing, J. Alloys Compounds, 2015, 640, p 347–354

    CAS  Google Scholar 

  31. Q. Mei, K. Tsuchiya, and H. Gao, Different Stages in the Continuous Microstructural Evolution of Copper Deformed to Ultrahigh Plastic Strains, Scripta Mater., 2012, 67(12), p 1003–1006

    CAS  Google Scholar 

  32. W. Abdel-Aziem, A. Hamada, T. Makino, M. Hassan, Microstructural Evolution During Extrusion of Equal Channel Angular-Pressed AA1070 Alloy in Micro/Mesoscale. Mater. Sci. Technol. 1-9 (2020)

  33. P. Hurley and F. Humphreys, The Application of EBSD to the Study of Substructural Development in a Cold Rolled Single-Phase Aluminium Alloy, Acta Mater., 2003, 51(4), p 1087–1102

    CAS  Google Scholar 

  34. P. Hurley, P. Bate, and F. Humphreys, An Objective Study of Substructural Boundary Alignment in Aluminium, Acta Mater., 2003, 51(16), p 4737–4750

    CAS  Google Scholar 

  35. F. Humphreys, P. Prangnell, J.R. Bowen, A. Gholinia, and C. Harris, Developing Stable Fine–Grain Microstructures by Large Strain Deformation, Philos. Trans. Royal Soc. Lond. Ser. A Math. Phys. Eng. Sci., 1999, 357(1756), p 1663–1681

    CAS  Google Scholar 

  36. I. Beyerlein, R. Lebensohn, and C. Tome, Modeling Texture and Microstructural Evolution in the Equal Channel Angular Extrusion Process, Mater. Sci. Eng., A, 2003, 345(1–2), p 122–138

    Google Scholar 

  37. C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon, The Evolution of Homogeneity and Grain Refinement During Equal-Channel Angular Pressing: A Model For Grain Refinement In ECAP, Mater. Sci. Eng., A, 2005, 398(1–2), p 66–76

    Google Scholar 

  38. E. El-Danaf, M. Soliman, A. Almajid, and M. El-Rayes, Enhancement of Mechanical Properties and Grain Size Refinement Of Commercial Purity Aluminum 1050 Processed by ECAP, Mater. Sci. Eng., A, 2007, 458(1–2), p 226–234

    Google Scholar 

  39. B. Tolaminejad and K. Dehghani, Microstructural Characterization and Mechanical Properties of Nanostructured AA1070 Aluminum After Equal Channel Angular Extrusion, Mater. Des., 2012, 34, p 285–292

    CAS  Google Scholar 

  40. M.I.A. El Aal and M. Sadawy, Influence of ECAP as Grain Refinement Technique on Microstructure Evolution, Mechanical Properties and Corrosion Behavior of Pure Aluminum, Trans. Nonferrous Metals Soc. China, 2015, 25(12), p 3865–3876

    Google Scholar 

  41. M. Kawasaki, Z. Horita, and T.G. Langdon, Microstructural Evolution in High Purity Aluminum Processed by ECAP, Mater. Sci. Eng., A, 2009, 524(1–2), p 143–150

    Google Scholar 

  42. Y. Zhao, Y. Guo, Q. Wei, A. Dangelewicz, C. Xu, Y. Zhu, T. Langdon, Y. Zhou, and E. Lavernia, Influence of Specimen Dimensions on the Tensile Behavior of Ultrafine-Grained Cu, Scripta Mater., 2008, 59(6), p 627–630

    CAS  Google Scholar 

  43. N. Hansen, Hall–Petch Relation and Boundary Strengthening, Scripta Mater., 2004, 51(8), p 801–806

    CAS  Google Scholar 

  44. H. Yu, Y. Xin, M. Wang, and Q. Liu, Hall–Petch Relationship in Mg Alloys: A Review, J. Mater. Sci. Technol., 2018, 34(2), p 248–256

    Google Scholar 

  45. W. Yuan, S. Panigrahi, J.-Q. Su, and R. Mishra, Influence of Grain Size and Texture on Hall–Petch Relationship for a Magnesium Alloy, Scripta Mater., 2011, 65(11), p 994–997

    CAS  Google Scholar 

  46. R. Valiev, N. Enikeev, M.Y. Murashkin, V. Kazykhanov, and X. Sauvage, On the Origin of the Extremely High Strength of Ultrafine-Grained Al Alloys Produced by Severe Plastic Deformation, Scripta Mater., 2010, 63(9), p 949–952

    CAS  Google Scholar 

  47. P.H.R. Pereira, Y.C. Wang, Y. Huang, and T.G. Langdon, Influence of Grain Size on the Flow Properties of An Al-Mg-Sc Alloy Over Seven Orders of Magnitude of Strain Rate, Mater. Sci. Eng., A, 2017, 685, p 367–376

    CAS  Google Scholar 

  48. Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon, Equal-Channel Angular Pressing of Commercial Aluminum Alloys: Grain Refinement, Thermal Stability and Tensile Properties, Metall. Mater. Trans. A, 2000, 31(3), p 691–701

    Google Scholar 

  49. K. Kim, D.-Y. Yang, and J.W. Yoon, Microstructural Evolution and its Effect on Mechanical Properties of Commercially Pure Aluminum Deformed by ECAE (Equal Channel Angular Extrusion) via Routes A and C, Mater. Sci. Eng., A, 2010, 527(29–30), p 7927–7930

    Google Scholar 

  50. Z. Li, D. Chen, H. Wang, E.J. Lavernia, and A. Shan, Nano-TiB2 Reinforced Ultrafine-Grained Pure Al Produced By Flux-Assisted Synthesis and Asymmetrical Rolling, J. Mater. Res., 2014, 29(21), p 2514

    CAS  Google Scholar 

  51. N. Hansen, The Effect of Grain Size and Strain on the Tensile Flow Stress of Aluminium at Room Temperature, Acta Metall., 1977, 25(8), p 863–869

    CAS  Google Scholar 

  52. Y. Duan, G. Xu, L. Tang, Z. Li, and G. Yang, Microstructure and Properties of the Novel Cu–0.30 Mg–0.05 Ce Alloy Processed by Equal Channel Angular Pressing, Mater. Sci. Eng., A, 2015, 648, p 252–259

    CAS  Google Scholar 

  53. M. Maki, Future Trend of New Metallurgy Due to Creation of Ultra Fine Grain Steels, Metals Technol. Kinzoku, 2001, 71(8), p 771–778

    CAS  Google Scholar 

  54. A. Azushima, R. Kopp, A. Korhonen, D. Yang, F. Micari, G. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, and A. Rosochowski, Severe Plastic Deformation (SPD) Processes for Metals, CIRP Ann., 2008, 57(2), p 716–735

    Google Scholar 

  55. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, and R.Z. Valiev, Microstructure and Properties of Pure Ti Processed by ECAP and Cold Extrusion, Mater. Sci. Eng., A, 2001, 303(1–2), p 82–89

    Google Scholar 

Download references

Acknowledgments

The authors are pleased to acknowledge the financial support from the Missions Sector, Higher Education Ministry, Egypt, through this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walaa Abdel-Aziem.

Ethics declarations

Conflicts of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Aziem, W., Hamada, A., Makino, T. et al. Micro/Meso-Scale Equal Channel Angular Pressing of Al 1070 Alloy: Microstructure and Mechanical Properties. J. of Materi Eng and Perform 29, 6201–6211 (2020). https://doi.org/10.1007/s11665-020-05090-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05090-4

Keywords

Navigation