Skip to main content
Log in

Bioconversion of lawn waste amended with kitchen waste and buffalo dung in to value-added vermicompost using Eisenia foetida to alleviate landfill burden

  • REGIONAL CASE STUDY
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Enormous quantities of waste such as lawn waste (LW) and kitchen waste (KW) are generated in urban institutes, proper management of which is crucial. The present work was designed to bio-convert LW and KW amended with buffalo dung (BD) into humus-rich manures through composting and vermicomposting technology over a period of 3 months. At the termination of vermicomposting process, there was significant decline from initial value in certain parameters like pH (8.17–6.74), total organic carbon (36.12–28.04) and C:N (39–16), whereas increase was observed in parameters like electrical conductivity (1.19–3.22), N (1.35–1.89%), P (0.18–0.44%), K (0.78–1.06%). Concentration of toxic heavy metals (Co, Cd, Cu, As, Cr, and Pb) declined significantly in the end product. Fecundity of earthworms was favored more by higher proportion of BD, moderate KW, and 10% LW in the feedstock, and was maximum in the combination (BD60% + LW10% + KW30%) followed by (BD50% + LW0% + 50%), (BD40% + LW20% + KW40%) and (BD30% + LW20% + KW40%). Enzymatic activities such as urease, phosphatase, and dehydrogenase were found to be high initially, but declined towards maturity of the vermicompost. The study shows that buffalo dung, kitchen waste, lawn waste (6:1:3 ratio) give best quality vermicompost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hanc A, Pliva P (2013) Vermicomposting technology as a tool for nutrient recovery from kitchen bio-waste. J Mater Cycles Waste Manage 15:431–439. https://doi.org/10.1007/s10163-013-0127-8

    Article  Google Scholar 

  2. Kumar M, Ou YL, Lin JG (2010) Co-composting of green waste and food waste at low C/N ratio. Waste Manage 30:602–609. https://doi.org/10.1016/j.wasman.2009.11.023

    Article  Google Scholar 

  3. EPA U (2014) Municipal solid waste generation, recycling, and disposal in the United States: facts and figures for 2012. US Environ Prot Agency. https://www.epa.gov/sites/production/files/2015-09/documents/2012_msw_fs.pdf. Accessed 10 Jan 2020

  4. Wei Y, Li J, Shi D, Liu G, Zhao Y, Shimaoka T (2017) Environmental challenges impeding the composting of biodegradable municipal solid waste: a critical review. Resour Conserv Recycl 122:51–65. https://doi.org/10.1016/j.resconrec.2017.01.024

    Article  Google Scholar 

  5. Warman P, AngLopez M (2010) Vermicompost derived from different feedstocks as a plant growth medium. Bioresour Technol 101:4479–4483. https://doi.org/10.1016/j.biortech.2010.01.098

    Article  Google Scholar 

  6. Zhang L, Yan C, Guo Q, Zhang J, Ruiz-Menjivar J (2018) The impact of agricultural chemical inputs on environment: global evidence from informetrics analysis and visualization. Int J Low-Carbon Tec 13:338–352. https://doi.org/10.1093/ijlct/cty039

    Article  Google Scholar 

  7. Edwards CA, Arancon NQ (2005) The science of vermiculture: the use of earthworms in organic waste management. In: Guerrero RD, Guerrero-del Castillo MRA (eds) Vermi-technologies for Developing Countries, Proceedings of the International Symposium-Workshop on Vermi-technologies for Developing Countries, Philippine Fisheries Association, Inc., Los Banos,

  8. Lim SL, Wu TY (2016) Characterization of matured vermicompost derived from valorization of palm oil mill byproduct. J Agric Food Chem 64:1761–1769. https://doi.org/10.1021/acs.jafc.6b00531

    Article  Google Scholar 

  9. Hussain N, Das S, Goswami L, Das P, Sahariah B, Bhattacharya SS (2018) Intensification of vermitechnology for kitchen vegetable waste and paddy straw employing earthworm consortium: Assessment of maturity time, microbial community structure, and economic benefit. J Clean Prod 182:414–426. https://doi.org/10.1016/j.jclepro.2018.01.241

    Article  Google Scholar 

  10. Manyapu V, Mandpe A, Kumar S (2018) Synergistic effect of fly ash in in-vessel composting of biomass and kitchen waste. Bioresour Technol 251:114–120. https://doi.org/10.1016/j.biortech.2017.12.039

    Article  Google Scholar 

  11. Garg V, Yadav YK, Sheoran A, Chand S, Kaushik P (2006) Livestock excreta management through vermicomposting using an epigeic earthworm Eisenia foetida. Environmentalist 26:269–276. https://doi.org/10.1007/s10669-006-8641-z

    Article  Google Scholar 

  12. Frederickson J, Howell G, Hobson AM (2007) Effect of pre-composting and vermicomposting on compost characteristics. Eur J Soil Biol 43:S320–S326. https://doi.org/10.1016/j.ejsobi.2007.08.032

    Article  Google Scholar 

  13. Garg V, Gupta R (2011) Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicomposting using Eisenia fetida. Ecotoxicol Environ Saf 74:19–24. https://doi.org/10.1016/j.ecoenv.2010.09.015

    Article  Google Scholar 

  14. Suthar S (2010) Recycling of agro-industrial sludge through vermitechnology. Ecol Eng 36:1028–1036. https://doi.org/10.1016/j.ecoleng.2010.04.015

    Article  Google Scholar 

  15. Soobhany N, Mohee R, Garg VK (2015) Experimental process monitoring and potential of Eudrilus eugeniae in the vermicomposting of organic solid waste in Mauritius. Ecol Eng 84:149–158. https://doi.org/10.1016/j.ecoleng.2015.08.003

    Article  Google Scholar 

  16. Bhat SA, Singh J, Vig AP (2017) Amelioration and degradation of pressmud and bagasse wastes using vermitechnology. Bioresour Technol 243:1097–1104. https://doi.org/10.1016/j.biortech.2017.07.093

    Article  Google Scholar 

  17. Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter methods of soil analysis: part 3. Chem Methods 3:961–1010. https://doi.org/10.2136/sssabookser5.3.c34

    Article  Google Scholar 

  18. Song X, Liu M, Wu D, Qi L, Ye C, Jiao J, Hu F (2014) Heavy metal and nutrient changes during vermicomposting animal manure spiked with mushroom residues. Waste Manage 34:1977–1983. https://doi.org/10.1016/j.wasman.2014.07.013

    Article  Google Scholar 

  19. Sharma K, Garg V (2018) Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour Technol 250:708–715. https://doi.org/10.1016/j.biortech.2017.11.101

    Article  Google Scholar 

  20. Wong M, Nortcliff S, Swift R (1998) Method for determining the acid ameliorating capacity of plant residue compost, urban waste compost, farmyard manure, and peat applied to tropical soils. Commun Soil Sci Plan 29:2927–2937. https://doi.org/10.1080/00103629809370166

    Article  Google Scholar 

  21. Watt GW, Chrisp JD (1954) Spectrophotometric method for determination of urea. Anal Chem 26:452–453. https://doi.org/10.1021/ac60087a006

    Article  Google Scholar 

  22. Casida J, Klein LD, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376

    Article  Google Scholar 

  23. Tabatabai M, Bremner J (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307. https://doi.org/10.1016/0038-0717(69)90012-1

    Article  Google Scholar 

  24. Dominguez J, Edwards CA (2011) Biology and ecology of earthworm species used for vermicomposting Vermiculture technology: earthworms, organic wastes, and environmental management. CRC Press, USA

    Google Scholar 

  25. Ansari AA, Rajpersaud J (2012) Physicochemical changes during vermicomposting of water hyacinth (Eichhornia crassipes) and grass clippings. ISRN Soil Science 2:1261–1262. https://doi.org/10.5402/2012/984783

    Article  Google Scholar 

  26. Cai L, Gong X, Sun X, Li S, Yu X (2018) Comparison of chemical and microbiological changes during the aerobic composting and vermicomposting of green waste. PLoS ONE 13:e0207494. https://doi.org/10.1371/journal.pone.0207494

    Article  Google Scholar 

  27. Nayak AK, Varma VS, Kalamdhad AS (2013) Effects of various C/N ratios during vermicomposting of sewage sludge using Eisenia fetida. J Environ Sci Technol 6:63–78. https://doi.org/10.3923/jest.2013.63.78

    Article  Google Scholar 

  28. Singh J (1997) Habitat preferences of selected Indian earthworm species and their efficiency in reduction of organic materials. Soil Biol Biochem 29:585–588. https://doi.org/10.1016/S0038-0717(96)00183-6

    Article  Google Scholar 

  29. Tognetti C, Laos F, Mazzarino MJ, Fernández H, Teresa M (2005) Composting vs. vermicomposting: a comparison of end product quality. Compost Sci Util 13:6–13. https://doi.org/10.1080/1065657X.2005.10702212

    Article  Google Scholar 

  30. Suthar S (2007) Vermicomposting potential of Perionyx sansibaricus (Perrier) in different waste materials. Bioresour Technol 98:1231–1237. https://doi.org/10.1016/j.biortech.2006.05.008

    Article  Google Scholar 

  31. Singh S, Bhat AS, Singh J, Kaur R, Vig PA (2017) Earthworms converting milk processing industry sludge into bio-manure. Open Waste Manag J 10:30–40. https://doi.org/10.2174/1876400201710010030

    Article  Google Scholar 

  32. Goswami L, Pratihar S, Dasgupta S, Bhattacharyya P, Mudoi P, Bora J, Bhattacharya SS, Kim KH (2016) Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis. Sci Rep 6:30402. https://doi.org/10.1038/srep30402

    Article  Google Scholar 

  33. Negi R, Suthar S (2018) Degradation of paper mill wastewater sludge and cow dung by brown-rot fungi Oligoporus placenta and earthworm (Eisenia fetida) during vermicomposting. J Clean Prod 201:842–852. https://doi.org/10.1016/j.jclepro.2018.08.068

    Article  Google Scholar 

  34. Epstein E (2011) Industrial composting environmental engineeringand facilities. Baco Raton, London

    Book  Google Scholar 

  35. Senesi N (1989) Composted materials as organic fertilizers. Sci Total Environ 81:521–542. https://doi.org/10.1016/0048-9697(89)90161-7

    Article  Google Scholar 

  36. Ramnarain YI, Ansari AA, Ori L (2019) Vermicomposting of different organic materials using the epigeic earthworm Eisenia foetida. Int J Recycl Org Waste Agric 8:23–36. https://doi.org/10.1007/s40093-018-0225-7

    Article  Google Scholar 

  37. Ludibeth SM, Marina IE, Vicenta EM (2012) Vermicomposting of sewage sludge: earthworm population and agronomic advantages. Compost Sci Util 20:11–17. https://doi.org/10.1080/1065657X.2012.10737016

    Article  Google Scholar 

  38. Singh WR, Kalamdhad AS (2016) Transformation of nutrients and heavy metals during vermicomposting of the invasive green weed Salvinia natans using Eisenia fetida. Int J Recycl Org Waste Agric 5:205–220. https://doi.org/10.1007/s40093-016-0129-3

    Article  Google Scholar 

  39. Padmavathiamma PK, Li LY, Kumari UR (2008) An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresour Technol 99:1672–1681. https://doi.org/10.1016/j.biortech.2007.04.028

    Article  Google Scholar 

  40. Sharma K, Garg VK (2019) Recycling of lignocellulosic waste as vermicompost using earthworm Eisenia fetida. Environ Sci Pollut Res 26:14024–14035. https://doi.org/10.1007/s11356-019-04639-8

    Article  Google Scholar 

  41. Singh D, Suthar S (2012) Vermicomposting of herbal pharmaceutical industry waste: Earthworm growth, plant-available nutrient and microbial quality of end materials. Bioresour Technol 112:179–185. https://doi.org/10.1016/j.biortech.2012.02.101

    Article  Google Scholar 

  42. Taeporamaysamai O, Ratanatamskul C (2016) Co-composting of various organic substrates from municipal solid waste using an on-site prototype vermicomposting reactor. Int Biodeter Biodegr 113:357–366. https://doi.org/10.1016/j.ibiod.2016.05.009

    Article  Google Scholar 

  43. Zhi-wei S, Tao S, Wen-jing D, Jing W (2019) Investigation of rice straw and kitchen waste degradation through vermicomposting. J Environ Manage 243:269–272. https://doi.org/10.1016/j.jenvman.2019.04.126

    Article  Google Scholar 

  44. Singh J, Kalamdhad AS (2013) Effect of Eisenia fetida on speciation of heavy metals during vermicomposting of water hyacinth. Ecol Eng 60:214–223. https://doi.org/10.1016/j.ecoleng.2013.07.010

    Article  Google Scholar 

  45. Alloway B, Ayres DC (1997) Chemical principles of environmental pollution. Water Air Soil Pollut 102:216–218. https://doi.org/10.1023/A:1004986209096

    Article  Google Scholar 

  46. Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156. https://doi.org/10.1590/S1677-04202005000100012

    Article  Google Scholar 

  47. Fernandes J, Henriques F (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57:246–273. https://doi.org/10.1007/BF0285856Z

    Article  Google Scholar 

  48. Roshan Singh W, Kumar Pankaj S, Singh J, Kalamdhad AS (2014) Reduction of bioavailabil ity of heavy metals during vermicomposting of phumdi biomass of Loktak Lake (India) using Ei senia fetida. Chem Spec Bioavailab 26:158–166. https://doi.org/10.3184/095422914X14043211756226

    Article  Google Scholar 

  49. Hafeez B, Khanif Y, Saleem M (2013) Role of zinc in plant nutrition-a review. Am J Exp Agric 3:374

    Google Scholar 

  50. Hait S, Tare V (2012) Transformation and availability of nutrients and heavy metals during integrated composting-vermicomposting of sewage sludges. Ecotoxicol Environ Saf 79:214–224. https://doi.org/10.1016/j.ecoenv.2012.01.004

    Article  Google Scholar 

  51. Gopal R, Gopal R, Dube BK, Sinha P, Chatterjee C (2003) Cobalt toxicity effects on growth and metabolism of tomato. Commun Soil Sci Plan 34:619–628. https://doi.org/10.1081/CSS-120018963

    Article  Google Scholar 

  52. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam T 213:113–136. https://doi.org/10.1007/978-1-4419-9860-6_4

    Article  Google Scholar 

  53. Liu F, Zhu P, Xue J (2012) Comparative study on physical and chemical characteristics of sludge vermicomposted by Eisenia fetida. Procedia Environ Sci 16:418–423

    Article  Google Scholar 

  54. Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA, Yan G, Siddique KHM, Zhou W (2016) Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environ Exp 132:42–52. https://doi.org/10.1016/j.envexpbot.2016.08.004

    Article  Google Scholar 

  55. Maňáková B, Kuta J, Svobodová M, Hofman J (2014) Effects of combined composting and vermicomposting of waste sludge on arsenic fate and bioavailability. J Hazard Mater 280:544–551. https://doi.org/10.1016/j.jhazmat.2014.08.024

    Article  Google Scholar 

  56. Andresen E, Küpper H (2013) Cadmium toxicity in plants, in Cadmium: from toxicity to essentiality. Springer 1:395–413. https://doi.org/10.1007/978-94-007-5179-8

    Article  Google Scholar 

  57. Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 2013:375843. https://doi.org/10.1155/2012/375843

    Article  Google Scholar 

  58. Shahmansouri M, Pourmoghadas H, Parvaresh HR, Alidadi H (2005) Heavy metals bioaccumulation by Iranian and Australian earthworms (Eisenia fetida) in the sewage sludge vermicomposting. J Environ Health Sci 2:28–32

    Google Scholar 

  59. Gupta R, Mutiyar PK, Rawat NK, Saini MS, Garg VK (2007) Development of a water hyacinth based vermireactor using an epigeic earthworm Eisenia foetida. Bioresour Technol 98:2605–2610. https://doi.org/10.1016/j.biortech.2006.09.007

    Article  Google Scholar 

  60. XinHe YaxinZhang, Maocai S, Zeng G, Zhou M, MeirongLi, (2016) Effect of vermicomposting on concentration and speciation of heavy metals in sewage sludge with ad ditive materials. Bioresour Technol 218:867–873. https://doi.org/10.1016/j.biortech.2016.07.045

    Article  Google Scholar 

  61. Wang L, Zhang Y, Lian J, Chao J, Gao Y, Yang F, Zhang L (2013) Impact of fly ash and phophatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting. Bioresour Technol 136:281–287. https://doi.org/10.1016/j.biortech.2013.03.039

    Article  Google Scholar 

  62. Bhattacharya S, Chattopadhyay G (2006) Effect of vermicomposting on the transformation of some trace elements in fly ash. Nutr Cycl Agroecosys 75:223–231. https://doi.org/10.1007/s10705-006-9029-7

    Article  Google Scholar 

  63. Swati A, Hait S (2017) Fate and bioavailability of heavy metals during vermicomposting of various organic wastes-a review. Process Saf Environ 109:30–45. https://doi.org/10.1016/j.psep.2017.03.031

    Article  Google Scholar 

  64. Sudkolai ST, Nourbakhsh F (2017) Urease activity as an index for assessing the maturity of cow manure and wheat residue vermicomposts. Waste Manage 64:63–66. https://doi.org/10.1016/j.wasman.2017.03.011

    Article  Google Scholar 

  65. Ke GR, Lai CM, Liu YY, Yang SS (2010) Inoculation of food waste with the thermo-tolerant lipolytic actinomycete Thermoactinomyces vulgaris A31 and maturity evaluation of the compost. Bioresour Technol 101:7424–7431. https://doi.org/10.1016/j.biortech.2010.04.051

    Article  Google Scholar 

  66. Raut M, William SPMP, Bhattacharyya JK, Chakrabarti T, Devotta S (2008) Microbial dynamics and enzyme activities during rapid composting of municipal solid waste–a compost maturity analysis perspective. Bioresour Technol 99:6512–6519. https://doi.org/10.1016/j.biortech.2007.11.030

    Article  Google Scholar 

  67. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587. https://doi.org/10.1186/2193-1801-2-587

    Article  Google Scholar 

  68. Lakshmi CSR, Rao PC, Sreelatha T, Madhavi M, Padmaja G, Sireesha A (2014) Changes in enzyme activities during vermicomposting and normal composting of vegetable market waste. Agri Sci Digest 34:107–110. https://doi.org/10.5958/0976-0547.2014.00025.1

    Article  Google Scholar 

  69. Gong X, Cai L, Li S, Chang SX, Sun X, An Z (2018) Bamboo biochar amendment improves the growth and reproduction of Eisenia fetida and the quality of green waste vermicompost. Ecotoxicol Environ Saf 156:197–204. https://doi.org/10.1016/j.ecoenv.2018.03.023

    Article  Google Scholar 

  70. Macci C, Masciandaro G, Ceccanti B (2010) Vermicomposting of olive oil mill wastewaters. Waste Manag Res 28:738–747. https://doi.org/10.1177/0734242X09345278

    Article  Google Scholar 

  71. Busato JG, Papa G, Canellas LP, Adani F, de Oliveira AL, Leão TP (2016) Phosphatase activity and its relationship with physical and chemical parameters during vermicomposting of filter cake and cattle manure. J Sci Food Agric 96:1223–1230. https://doi.org/10.1002/jsfa.7210

    Article  Google Scholar 

  72. Alidadi H, Hosseinzadeh A, Najafpoor AA, Esmaili H, Zanganeh J, Dolatabadi Takabi M, Piranloo FG (2016) Waste recycling by vermicomposting: Maturity and quality assessment via dehydrogenase enzyme activity, lignin, water soluble carbon, nitrogen, phosphorous and other indicators. J Environ Manage 182:134–140. https://doi.org/10.1016/j.jenvman.2016.07.025

    Article  Google Scholar 

  73. Huang K, Li F, Wei Y, Chen X, Fu X (2013) Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida. Bioresour Technol 150:235–241. https://doi.org/10.1016/j.biortech.2013.10.006

    Article  Google Scholar 

  74. Lv B, Xing M, Yang J (2018) Exploring the effects of earthworms on bacterial profiles during vermicomposting process of sewage sludge and cattle dung with high-throughput sequencing. Environ Sci Pollut Res 25:12528–12537. https://doi.org/10.1007/s11356-018-1520-6

    Article  Google Scholar 

  75. Ievinsh G (2011) Vermicompost treatment differentially affects seed germination, seedling growth and physiological status of vegetable crop species. Plant Growth Regul 65:169–181. https://doi.org/10.1007/s10725-011-9586-x

    Article  Google Scholar 

  76. Bhat SA, Singh S, Singh J, Kumar S, Vig AP (2018) Bioremediation and detoxification of industrial wastes by earthworms: vermicompost as powerful crop nutrient in sustainable agriculture. Bioresour Technol 252:172–179. https://doi.org/10.1016/j.biortech.2018.01.003

    Article  Google Scholar 

  77. Karwal M, Kaushik A (2020) Co-composting and vermicomposting of coal fly-ash with press mud: changes in nutrients, micro-nutrients and enzyme activities. Environ Technol Innov 18:100708. https://doi.org/10.1016/j.eti.2020.10070

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Indian Agricultural Research Institute (New Delhi) and KIET Group of Institutions for providing necessary facilities. We would like to acknowledge the Indian Pharmacopoeia Commission (Ghaziabad) for providing facilities of inductively coupled plasma mass spectrometry (ICP-MS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anubha Kaushik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karwal, M., Kaushik, A. Bioconversion of lawn waste amended with kitchen waste and buffalo dung in to value-added vermicompost using Eisenia foetida to alleviate landfill burden. J Mater Cycles Waste Manag 23, 358–370 (2021). https://doi.org/10.1007/s10163-020-01101-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-020-01101-7

Keywords

Navigation